Keiluweit Marco, Nico Peter, Harmon Mark E, Mao Jingdong, Pett-Ridge Jennifer, Kleber Markus
Soils Division, Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97330; Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550;
Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720;
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):E5253-60. doi: 10.1073/pnas.1508945112. Epub 2015 Sep 8.
Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn(2+) provided by fresh plant litter to produce oxidative Mn(3+) species at sites of active decay, with Mn eventually accumulating as insoluble Mn(3+/4+) oxides. Formation of reactive Mn(3+) species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn(3+)-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn(3+) species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant-soil system may have a profound impact on litter decomposition rates.
凋落物分解是一个关键的生态系统过程,影响着养分循环和生产力、土壤性质以及陆地碳(C)平衡,但调节分解速率的因素仍知之甚少。传统模型假定该速率由凋落物质量控制,依赖于木质素含量等参数作为预测指标。然而,在各种森林生态系统中,已观察到凋落物的锰(Mn)含量与分解速率之间存在很强的相关性。在此,我们表明森林生态系统中的长期凋落物分解与锰的氧化还原循环紧密相关。在7年的凋落物分解过程中,凋落物的微生物转化与锰的氧化态和浓度变化同步。对凋落物进行的详细化学成像分析表明,真菌募集并重新分配新鲜植物凋落物提供的无反应性Mn(2+),以在活跃腐烂部位产生氧化性Mn(3+)物种,最终锰以不溶性Mn(3+/4+)氧化物的形式积累。活性Mn(3+)物种的形成与芳香族氧化产物的生成同时发生,这为先前假定的基于Mn(3+)的氧化剂在凋落物分解中的作用提供了直接证据。我们的结果表明,我们针叶林站点的凋落物分解机制取决于植物和微生物在凋落物层中供应、积累和再生短寿命Mn(3+)物种的能力。这一观察结果表明,植物-土壤系统中锰的生物有效性、迁移性和反应性的生物地球化学限制可能对凋落物分解速率产生深远影响。