Robinson Reeder, Qureshi Insaf A, Klancher Catherine A, Rodriguez Pedro J, Tanner John J, Sobrado Pablo
Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA.
Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
Arch Biochem Biophys. 2015 Nov 1;585:25-31. doi: 10.1016/j.abb.2015.09.008. Epub 2015 Sep 12.
The SidA ornithine N5-monooxygenase from Aspergillus fumigatus is a flavin monooxygenase that catalyzes the NADPH-dependent hydroxylation of ornithine. Herein we report a mutagenesis study targeting four residues that contact ornithine in crystal structures of SidA: Lys107, Asn293, Asn323, and Ser469. Mutation of Lys107 to Ala abolishes activity as measured in steady-state oxygen consumption and ornithine hydroxylation assays, indicating that the ionic interaction of Lys107 with the carboxylate of ornithine is essential for catalysis. Mutation of Asn293, Asn323, or Ser469 individually to Ala results in >14-fold increases in Km values for ornithine. Asn323 to Ala also increases the rate constant for flavin reduction by NADPH by 18-fold. Asn323 is unique among the four ornithine binding residues in that it also interacts with NADPH by forming a hydrogen bond with the nicotinamide ribose. The crystal structure of N323A complexed with NADP(+) and ornithine shows that the nicontinamide riboside group of NADP is disordered. This result suggests that the increase in flavin reduction rate results from an increase in conformational space available to the enzyme-bound NADP(H). Asn323 thus facilitates ornithine binding at the expense of hindering flavin reduction, which demonstrates the delicate balance that exists within protein-ligand interaction networks in enzyme active sites.
烟曲霉的SidA鸟氨酸N5-单加氧酶是一种黄素单加氧酶,可催化依赖NADPH的鸟氨酸羟基化反应。在此,我们报道了一项针对SidA晶体结构中与鸟氨酸接触的四个残基的诱变研究:Lys107、Asn293、Asn323和Ser469。将Lys107突变为Ala会消除稳态氧消耗和鸟氨酸羟基化测定中测得的活性,这表明Lys107与鸟氨酸羧酸盐的离子相互作用对催化至关重要。将Asn293、Asn323或Ser469分别突变为Ala会导致鸟氨酸的Km值增加14倍以上。Asn323突变为Ala还会使NADPH还原黄素的速率常数增加18倍。Asn323在四个鸟氨酸结合残基中是独特的,因为它还通过与烟酰胺核糖形成氢键与NADPH相互作用。与NADP(+)和鸟氨酸复合的N323A晶体结构表明,NADP的烟酰胺核糖苷基团是无序的。这一结果表明,黄素还原速率的增加是由于酶结合的NADP(H)可利用的构象空间增加所致。因此,Asn323促进了鸟氨酸的结合,但以阻碍黄素还原为代价,这证明了酶活性位点中蛋白质-配体相互作用网络内存在的微妙平衡。