Suppr超能文献

临床注释部分检测使用统一医学语言系统语义类型的隐马尔可夫模型。

Clinical Note Section Detection Using a Hidden Markov Model of Unified Medical Language System Semantic Types.

机构信息

Center for Biomedical Informatics, Brown University, Providence RI.

The Warren Alpert Medical School, Brown University, Providence, RI.

出版信息

AMIA Annu Symp Proc. 2022 Feb 21;2021:418-427. eCollection 2021.

Abstract

Clinical notes are a rich source of biomedical data for natural language processing (NLP). The identification of note sections represents a first step in creating portable NLP tools. Here, a system that used a heterogeneous hidden Markov model (HMM) was designed to identify seven note sections: (1) Medical History, (2) Medications, (3) Family and Social History, (4) Physical Exam, (5) Labs and Imaging, (6) Assessment and Plan, and (7) Review of Systems. Unified Medical Language System (UMLS) concepts were identified using MetaMap, and UMLS semantic type distributions for each section type were empirically determined. The UMLS semantic type distributions were used to train the HMM for identifying clinical note sections. The system was evaluated relative to a template boundary model using manually annotated notes from the Medical Information Mart for Intensive Care III. The results show promise for an approach to segment clinical notes into sections for subsequent NLP tasks.

摘要

临床笔记是自然语言处理 (NLP) 的生物医学数据的丰富来源。注释部分的识别是创建可移植的 NLP 工具的第一步。在这里,设计了一个使用异构隐马尔可夫模型 (HMM) 的系统来识别七个注释部分:(1) 病史,(2) 药物,(3) 家族和社会史,(4) 体检,(5) 实验室和影像学,(6) 评估和计划,以及 (7) 系统回顾。使用 MetaMap 识别统一医学语言系统 (UMLS) 概念,并通过经验确定每个部分类型的 UMLS 语义类型分布。使用 UMLS 语义类型分布来训练 HMM 以识别临床笔记部分。该系统相对于使用从重症监护医疗信息集市 III 手动注释的模板边界模型进行了评估。结果表明,这种方法有望将临床笔记分割成后续 NLP 任务的部分。

相似文献

4
A comparison of word embeddings for the biomedical natural language processing.
J Biomed Inform. 2018 Nov;87:12-20. doi: 10.1016/j.jbi.2018.09.008. Epub 2018 Sep 12.
7
Mapping terms to UMLS concepts of the same semantic type.
AMIA Annu Symp Proc. 2007 Oct 11:1136.
8
Towards a semantic lexicon for clinical natural language processing.
AMIA Annu Symp Proc. 2012;2012:568-76. Epub 2012 Nov 3.
10
Towards comprehensive syntactic and semantic annotations of the clinical narrative.
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):922-30. doi: 10.1136/amiajnl-2012-001317. Epub 2013 Jan 25.

引用本文的文献

1
DR.BENCH: Diagnostic Reasoning Benchmark for Clinical Natural Language Processing.
J Biomed Inform. 2023 Feb;138:104286. doi: 10.1016/j.jbi.2023.104286. Epub 2023 Jan 25.

本文引用的文献

1
Extracting Angina Symptoms from Clinical Notes Using Pre-Trained Transformer Architectures.
AMIA Annu Symp Proc. 2021 Jan 25;2020:412-421. eCollection 2020.
2
Reconsidering hospital EHR adoption at the dawn of HITECH: implications of the reported 9% adoption of a "basic" EHR.
J Am Med Inform Assoc. 2020 Aug 1;27(8):1198-1205. doi: 10.1093/jamia/ocaa090.
3
MIMIC-III, a freely accessible critical care database.
Sci Data. 2016 May 24;3:160035. doi: 10.1038/sdata.2016.35.
5
Comparison of UMLS terminologies to identify risk of heart disease using clinical notes.
J Biomed Inform. 2015 Dec;58 Suppl(Suppl):S103-S110. doi: 10.1016/j.jbi.2015.08.025. Epub 2015 Sep 12.
6
Social determinants of family health history collection.
J Community Genet. 2016 Jan;7(1):57-64. doi: 10.1007/s12687-015-0251-3. Epub 2015 Aug 18.
7
Electronic health records improve clinical note quality.
J Am Med Inform Assoc. 2015 Jan;22(1):199-205. doi: 10.1136/amiajnl-2014-002726. Epub 2014 Oct 23.
9
Automatic segmentation of clinical texts.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5905-8. doi: 10.1109/IEMBS.2009.5334831.
10
Evaluation of a method to identify and categorize section headers in clinical documents.
J Am Med Inform Assoc. 2009 Nov-Dec;16(6):806-15. doi: 10.1197/jamia.M3037. Epub 2009 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验