Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California 90089, United States.
Department of Electrical Engineering, Yale University , New Haven, Connecticut 06511, United States.
ACS Nano. 2015 Oct 27;9(10):10356-65. doi: 10.1021/acsnano.5b05585. Epub 2015 Sep 16.
Due to their favorable materials properties including direct bandgap and high electron mobilities, epitaxially grown III-V compound semiconductors such as gallium arsenide (GaAs) provide unmatched performance over silicon in solar energy harvesting. Nonetheless, their large-scale deployment in terrestrial photovoltaics remains challenging mainly due to the high cost of growing device quality epitaxial materials. In this regard, reducing the thickness of constituent active materials under appropriate light management schemes is a conceptually viable option to lower the cost of GaAs solar cells. Here, we present a type of high efficiency, ultrathin GaAs solar cell that incorporates bifacial photon management enabled by techniques of transfer printing to maximize the absorption and photovoltaic performance without compromising the optimized electronic configuration of planar devices. Nanoimprint lithography and dry etching of titanium dioxide (TiO2) deposited directly on the window layer of GaAs solar cells formed hexagonal arrays of nanoscale posts that serve as lossless photonic nanostructures for antireflection, diffraction, and light trapping in conjunction with a co-integrated rear-surface reflector. Systematic studies on optical and electrical properties and photovoltaic performance in experiments, as well as numerical modeling, quantitatively describe the optimal design rules for ultrathin, nanostructured GaAs solar cells and their integrated modules.
由于其具有直接带隙和高电子迁移率等优良的材料特性,外延生长的 III-V 族化合物半导体,如砷化镓(GaAs),在太阳能收集方面的性能优于硅。尽管如此,由于生长器件质量外延材料的成本高昂,它们在地面光伏中的大规模应用仍然具有挑战性。在这方面,在适当的光管理方案下减少组成活性材料的厚度是降低 GaAs 太阳能电池成本的一种可行的概念选择。在这里,我们提出了一种高效率、超薄的 GaAs 太阳能电池,它采用了通过转印技术实现的双面光子管理,最大限度地提高了吸收和光伏性能,同时又不影响平面器件的优化电子结构。在 GaAs 太阳能电池的窗口层上直接沉积的二氧化钛(TiO2)的纳米压印光刻和干法刻蚀形成了六边形纳米柱阵列,这些纳米柱作为无损光子纳米结构,用于抗反射、衍射和光捕获,并与集成的后表面反射器结合使用。实验和数值模拟中的光学和电学性能以及光伏性能的系统研究定量描述了超薄、纳米结构 GaAs 太阳能电池及其集成模块的最佳设计规则。