School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907.
Department of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22903.
Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):E7236-E7244. doi: 10.1073/pnas.1806640115. Epub 2018 Jul 16.
Transfer printing of thin-film nanoelectronics from their fabrication wafer commonly requires chemical etching on the sacrifice of wafer but is also limited by defects with a low yield. Here, we introduce a wafer-recyclable, environment-friendly transfer printing process that enables the wafer-scale separation of high-performance thin-film nanoelectronics from their fabrication wafer in a defect-free manner that enables multiple reuses of the wafer. The interfacial delamination is enabled through a controllable cracking phenomenon in a water environment at room temperature. The physically liberated thin-film nanoelectronics can be then pasted onto arbitrary places of interest, thereby endowing the particular surface with desirable add-on electronic features. Systematic experimental, theoretical, and computational studies reveal the underlying mechanics mechanism and guide manufacturability for the transfer printing process in terms of scalability, controllability, and reproducibility.
从其制造晶圆转移打印薄膜纳米电子学通常需要牺牲晶圆的化学蚀刻,但也受到低产量缺陷的限制。在这里,我们引入了一种可重复使用晶圆的环保转移打印工艺,该工艺可在无缺陷的情况下实现高性能薄膜纳米电子学从其制造晶圆的晶圆级分离,从而可多次重复使用晶圆。界面分层是通过在室温下的水环境中可控的开裂现象实现的。然后,可以将释放出来的薄膜纳米电子器件粘贴到任意感兴趣的地方,从而为特定表面赋予理想的附加电子功能。系统的实验、理论和计算研究揭示了转移打印过程的基础力学机制,并从可扩展性、可控性和可重复性方面指导了其制造可行性。