Lim Haneol, Young James L, Geisz John F, Friedman Daniel J, Deutsch Todd G, Yoon Jongseung
Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA.
National Renewable Energy Laboratory, Golden, CO, 80401, USA.
Nat Commun. 2019 Jul 29;10(1):3388. doi: 10.1038/s41467-019-11351-1.
Catalytic interface of semiconductor photoelectrodes is critical for high-performance photoelectrochemical solar water splitting because of its multiple roles in light absorption, electrocatalysis, and corrosion protection. Nevertheless, simultaneously optimizing each of these processes represents a materials conundrum owing to conflicting requirements of materials attributes at the electrode surface. Here we show an approach that can circumvent these challenges by collaboratively exploiting corrosion-resistant surface stoichiometry and structurally-tailored reactive interface. Nanoporous, density-graded surface of 'black' gallium indium phosphide (GaInP), when combined with ammonium-sulfide-based surface passivation, effectively reduces reflection and surface recombination of photogenerated carriers for high efficiency photocatalysis in the hydrogen evolution half-reaction, but also augments electrochemical durability with lifetime over 124 h via strongly suppressed kinetics of corrosion. Such synergistic control of stoichiometry and structure at the reactive interface provides a practical pathway to concurrently enhance efficiency and durability of semiconductor photoelectrodes without solely relying on the development of new protective materials.
半导体光电极的催化界面对于高性能光电化学太阳能水分解至关重要,因为它在光吸收、电催化和腐蚀防护中具有多种作用。然而,由于电极表面材料属性的相互冲突要求,同时优化这些过程中的每一个都构成了一个材料难题。在这里,我们展示了一种方法,通过协同利用耐腐蚀的表面化学计量和结构定制的反应界面,可以规避这些挑战。“黑色”磷化镓铟(GaInP)的纳米多孔、密度渐变表面,与基于硫化铵的表面钝化相结合,不仅能有效减少光生载流子的反射和表面复合,以实现高效光催化析氢半反应,还能通过强烈抑制腐蚀动力学,将电化学耐久性提高到超过124小时。这种在反应界面处对化学计量和结构的协同控制提供了一条切实可行的途径,可在不单纯依赖新型保护材料开发的情况下,同时提高半导体光电极的效率和耐久性。