School of Chemical and Biomolecular Engineering, University of Sydney , Sydney, New South Wales 2006, Australia.
Burns Research Group, ANZAC Research Institute, University of Sydney , Concord, New South Wales 2139, Australia.
ACS Appl Mater Interfaces. 2015 Oct 14;7(40):22421-30. doi: 10.1021/acsami.5b06407. Epub 2015 Oct 1.
The acidic nature of the degradation products of polyesters often leads to unpredictable clinical complications, such as necrosis of host tissues and massive immune cell invasions. In this study, poly(propylene carbonate) (PPC) and starch composite is introduced with superior characteristics as an alternative to polyester-based polymers. The degradation products of PPC-starch composites are mainly carbon dioxide and water; hence, the associated risks to the acidic degradation of polyesters are minimized. Moreover, the compression strength of PPC-starch composites can be tuned over the range of 0.2±0.03 MPa to 33.9±1.51 MPa by changing the starch contents of composites to address different clinical needs. More importantly, the addition of 50 wt % starch enhances the thermal processing capacity of the composites by elevating their decomposition temperature from 245 to 276 °C. Therefore, thermal processing methods, such as extrusion and hot melt compression methods can be used to generate different shapes and structures from PPC-starch composites. We also demonstrated the cytocompatibility and biocompatibility of these composites by conducting in vitro and in vivo tests. For instance, the numbers of osteoblast cells were increased 2.5 fold after 7 days post culture. In addition, PPC composites in subcutaneous mice model resulted in mild inflammatory responses (e.g., the formation of fibrotic tissue) that were diminished from two to 4 weeks postimplantation. The long-term in vivo biodegradation of PPC composites are compared with poly(lactic acid) (PLA). The histochemical analysis revealed that after 8 weeks, the biodegradation of PLA leads to massive immune cell infusion and inflammation at the site, whereas the PPC composites are well-tolerated in vivo. All these results underline the favorable properties of PPC-starch composites as a benign biodegradable biomaterial for fabrication of biomedical implants.
聚酯降解产物的酸性性质通常会导致不可预测的临床并发症,如宿主组织坏死和大量免疫细胞浸润。在这项研究中,聚(碳酸丙烯酯)(PPC)和淀粉复合材料具有优异的特性,可作为聚酯基聚合物的替代品。PPC-淀粉复合材料的降解产物主要是二氧化碳和水;因此,最大限度地降低了与聚酯酸性降解相关的风险。此外,通过改变复合材料中的淀粉含量,可以将 PPC-淀粉复合材料的压缩强度调谐到 0.2±0.03 MPa 至 33.9±1.51 MPa 的范围内,以满足不同的临床需求。更重要的是,添加 50wt%的淀粉可以通过将复合材料的分解温度从 245°C 升高到 276°C 来提高其热加工能力。因此,可以使用热加工方法(如挤出和热熔压缩方法)来生成具有不同形状和结构的 PPC-淀粉复合材料。我们还通过体外和体内试验证明了这些复合材料的细胞相容性和生物相容性。例如,培养 7 天后,成骨细胞的数量增加了 2.5 倍。此外,皮下小鼠模型中的 PPC 复合材料导致轻度炎症反应(例如,纤维组织形成),在植入后 2 至 4 周内减轻。与聚乳酸(PLA)相比,对 PPC 复合材料的长期体内生物降解进行了比较。组织化学分析显示,8 周后,PLA 的生物降解导致大量免疫细胞浸润和炎症部位的炎症,而 PPC 复合材料在体内具有良好的耐受性。所有这些结果都强调了 PPC-淀粉复合材料作为一种良性可生物降解生物材料用于制造生物医学植入物的优良特性。