Cronenberger S, Scalbert D, Ferrand D, Boukari H, Cibert J
Laboratoire Charles Coulomb UMR 5221 CNRS/UM2, Université Montpellier, Place Eugene Bataillon, Montpellier Cedex 05 34095, France.
Université Grenoble Alpes, Grenoble F-38000, France.
Nat Commun. 2015 Sep 18;6:8121. doi: 10.1038/ncomms9121.
Spin noise spectroscopy is an optical technique which can probe spin resonances non-perturbatively. First applied to atomic vapours, it revealed detailed information about nuclear magnetism and the hyperfine interaction. In solids, this approach has been limited to carriers in semiconductor heterostructures. Here we show that atomic-like spin fluctuations of Mn ions diluted in CdTe (bulk and quantum wells) can be detected through the Kerr rotation associated to excitonic transitions. Zeeman transitions within and between hyperfine multiplets are clearly observed in zero and small magnetic fields and reveal the local symmetry because of crystal field and strain. The linewidths of these resonances are close to the dipolar limit. The sensitivity is high enough to open the way towards the detection of a few spins in systems where the decoherence due to nuclear spins can be suppressed by isotopic enrichment, and towards spin resonance microscopy with important applications in biology and materials science.
自旋噪声光谱学是一种光学技术,它可以非微扰地探测自旋共振。该技术最初应用于原子蒸气,揭示了有关核磁和超精细相互作用的详细信息。在固体中,这种方法一直局限于半导体异质结构中的载流子。在这里,我们表明,通过与激子跃迁相关的克尔旋转,可以检测稀释在碲化镉(体材料和量子阱)中的锰离子的类原子自旋涨落。在零磁场和小磁场中,可以清楚地观察到超精细多重态内部和之间的塞曼跃迁,并由于晶体场和应变揭示了局域对称性。这些共振的线宽接近偶极极限。灵敏度足够高,为在通过同位素富集可以抑制核自旋引起的退相干的系统中检测少数自旋开辟了道路,并为在生物学和材料科学中有重要应用的自旋共振显微镜开辟了道路。