Suppr超能文献

从其他疾病中学习:慢性真菌感染中的保护与病理

Learning from other diseases: protection and pathology in chronic fungal infections.

作者信息

Zelante Teresa, Pieraccini Giuseppe, Scaringi Lucia, Aversa Franco, Romani Luigina

机构信息

Pathology, Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06132, Perugia, Italy.

Mass Spectrometry Centre (CISM) of the University of Florence, Florence, Italy.

出版信息

Semin Immunopathol. 2016 Mar;38(2):239-48. doi: 10.1007/s00281-015-0523-3. Epub 2015 Sep 17.

Abstract

Fungal commensals coexist in a complex milieu of bacteria within the human body. An increased understanding of the importance of microbiota in shaping the host's immune and metabolic activities has rendered fungal interactions with their hosts more complex than previously appreciated. Metagenomics has revealed the complex interactions between fungal and bacterial commensals that, either directly or through the participation of the host immune system, impact on immune homeostasis at mucosal surfaces that, in turn, lead to secondary fungal infections. Metabolomics has captured the dialogue between the mammalian host and its microbiota. It appears that the host tryptophan catabolic enzyme, indoleamine 2,3-dioxygenase 1 (IDO1) plays a dominant role in the interplay between tryptophan catabolism by microbial communities, the host's own pathway of metabolite production, and the activation of the aryl hydrocarbon receptor (AhR)/IL-22 axis, eventually impacting on mucosal immune homeostasis and host/fungal symbiosis. Thus, the regulatory loop involving AhR and IDO1 may be exploited for the development of multi-pronged host- and microbiota-directed therapeutic approaches for mucosal and systemic fungal diseases.

摘要

真菌共生菌在人体细菌的复杂环境中共存。对微生物群在塑造宿主免疫和代谢活动方面重要性的进一步了解,使得真菌与宿主之间的相互作用比以前所认识的更为复杂。宏基因组学揭示了真菌与细菌共生菌之间的复杂相互作用,这些相互作用直接或通过宿主免疫系统的参与,影响粘膜表面的免疫稳态,进而导致继发性真菌感染。代谢组学捕捉到了哺乳动物宿主与其微生物群之间的对话。宿主色氨酸分解代谢酶吲哚胺2,3-双加氧酶1(IDO1)似乎在微生物群落色氨酸分解代谢、宿主自身代谢产物生成途径以及芳烃受体(AhR)/白细胞介素-22轴的激活之间的相互作用中起主导作用,最终影响粘膜免疫稳态和宿主/真菌共生关系。因此,涉及AhR和IDO1的调节回路可用于开发针对粘膜和全身性真菌疾病的多管齐下的宿主和微生物群导向治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验