Suppr超能文献

早期的网络活动在海马体和皮层之间双向传播。

Early network activity propagates bidirectionally between hippocampus and cortex.

作者信息

Barger Zeke, Easton Curtis R, Neuzil Kevin E, Moody William J

机构信息

Department of Biology, University of Washington, Seattle, Washington, 98195.

出版信息

Dev Neurobiol. 2016 Jun;76(6):661-72. doi: 10.1002/dneu.22351. Epub 2015 Oct 12.

Abstract

Spontaneous activity in the developing brain helps refine neuronal connections before the arrival of sensory-driven neuronal activity. In mouse neocortex during the first postnatal week, waves of spontaneous activity originating from pacemaker regions in the septal nucleus and piriform cortex propagate through the neocortex. Using high-speed Ca(2+) imaging to resolve the spatiotemporal dynamics of wave propagation in parasagittal mouse brain slices, we show that the hippocampus can act as an additional source of neocortical waves. Some waves that originate in the hippocampus remain restricted to that structure, while others pause at the hippocampus-neocortex boundary and then propagate into the neocortex. Blocking GABAergic neurotransmission decreases the likelihood of wave propagation into neocortex, whereas blocking glutamatergic neurotransmission eliminates spontaneous and evoked hippocampal waves. A subset of hippocampal and cortical waves trigger Ca(2+) waves in astrocytic networks after a brief delay. Hippocampal waves accompanied by Ca(2+) elevation in astrocytes are more likely to propagate into the neocortex. Finally, we show that two structures in our preparation that initiate waves-the hippocampus and the piriform cortex-can be electrically stimulated to initiate propagating waves at lower thresholds than the neocortex, indicating that the intrinsic circuit properties of those regions are responsible for their pacemaker function.

摘要

在感觉驱动的神经元活动到来之前,发育中大脑的自发活动有助于优化神经元连接。在出生后第一周的小鼠新皮层中,源自隔核和梨状皮层起搏器区域的自发活动波在新皮层中传播。利用高速Ca(2+)成像来解析矢状旁小鼠脑片波传播的时空动态,我们发现海马体可作为新皮层波的另一个来源。一些起源于海马体的波仍局限于该结构,而其他波在海马体-新皮层边界处暂停,然后传播到新皮层。阻断GABA能神经传递会降低波传播到新皮层的可能性,而阻断谷氨酸能神经传递则会消除自发和诱发的海马体波。一小部分海马体和皮层波在短暂延迟后会触发星形细胞网络中的Ca(2+)波。伴有星形细胞Ca(2+)升高的海马体波更有可能传播到新皮层。最后,我们表明,在我们的标本中引发波的两个结构——海马体和梨状皮层——可以通过电刺激以比新皮层更低的阈值引发传播波,这表明这些区域的内在电路特性决定了它们的起搏器功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验