Suppr超能文献

遗传消除 GABA 能神经传递揭示了发育中的小鼠皮层自发性活动波的两种不同起搏机制。

Genetic elimination of GABAergic neurotransmission reveals two distinct pacemakers for spontaneous waves of activity in the developing mouse cortex.

机构信息

Department of Biology, Department of Bioengineering, and Department of Neurological Surgery, University of Washington, Seattle, Washington 98195, and Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington 98101.

出版信息

J Neurosci. 2014 Mar 12;34(11):3854-63. doi: 10.1523/JNEUROSCI.3811-13.2014.

Abstract

Many structures of the mammalian CNS generate propagating waves of electrical activity early in development. These waves are essential to CNS development, mediating a variety of developmental processes, such as axonal outgrowth and pathfinding, synaptogenesis, and the maturation of ion channel and receptor properties. In the mouse cerebral cortex, waves of activity occur between embryonic day 18 and postnatal day 8 and originate in pacemaker circuits in the septal nucleus and the piriform cortex. Here we show that genetic knock-out of the major synthetic enzyme for GABA, GAD67, selectively eliminates the picrotoxin-sensitive fraction of these waves. The waves that remain in the GAD67 knock-out have a much higher probability of propagating into the dorsal neocortex, as do the picrotoxin-resistant fraction of waves in controls. Field potential recordings at the point of wave initiation reveal different electrical signatures for GABAergic and glutamatergic waves. These data indicate that: (1) there are separate GABAergic and glutamatergic pacemaker circuits within the piriform cortex, each of which can initiate waves of activity; (2) the glutamatergic pacemaker initiates waves that preferentially propagate into the neocortex; and (3) the initial appearance of the glutamatergic pacemaker does not require preceding GABAergic waves. In the absence of GAD67, the electrical activity underlying glutamatergic waves shows greatly increased tendency to burst, indicating that GABAergic inputs inhibit the glutamatergic pacemaker, even at stages when GABAergic pacemaker circuitry can itself initiate waves.

摘要

哺乳动物中枢神经系统的许多结构在发育早期会产生传播的电活动波。这些波对于中枢神经系统的发育至关重要,介导多种发育过程,如轴突生长和导向、突触形成以及离子通道和受体特性的成熟。在小鼠大脑皮层中,活动波发生在胚胎第 18 天至出生后第 8 天之间,起源于隔核和梨状皮质中的起搏器电路。在这里,我们表明 GABA 的主要合成酶 GAD67 的基因敲除选择性地消除了这些波中对苦毒蕈碱敏感的部分。在 GAD67 敲除小鼠中保留的波更有可能传播到背侧新皮质,而对照中的苦毒蕈碱抗性波的这一分支也是如此。在波起始点进行的场电位记录揭示了 GABA 能和谷氨酸能波的不同电特征。这些数据表明:(1)梨状皮质内存在单独的 GABA 能和谷氨酸能起搏器电路,每个电路都可以引发活动波;(2)谷氨酸能起搏器引发优先传播到新皮质的波;(3)谷氨酸能起搏器的初始出现不需要先前的 GABA 能波。在 GAD67 缺失的情况下,谷氨酸能波的基础电活动显示出极大增加的爆发趋势,表明 GABA 能输入抑制谷氨酸能起搏器,即使在 GABA 能起搏器电路本身可以引发波的阶段也是如此。

相似文献

引用本文的文献

6
Microfluidics for interrogating live intact tissues.用于检测活的完整组织的微流控技术。
Microsyst Nanoeng. 2020 Aug 24;6:69. doi: 10.1038/s41378-020-0164-0. eCollection 2020.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验