Suppr超能文献

在新生前脑神经元中超慢自发 Na 波动的起源。

On the origin of ultraslow spontaneous Na fluctuations in neurons of the neonatal forebrain.

机构信息

Department of Physics, University of South Florida, Tampa, Florida.

Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.

出版信息

J Neurophysiol. 2021 Feb 1;125(2):408-425. doi: 10.1152/jn.00373.2020. Epub 2020 Nov 25.

Abstract

Spontaneous neuronal and astrocytic activity in the neonate forebrain is believed to drive the maturation of individual cells and their integration into complex brain-region-specific networks. The previously reported forms include bursts of electrical activity and oscillations in intracellular Ca concentration. Here, we use ratiometric Na imaging to demonstrate spontaneous fluctuations in the intracellular Na concentration of CA1 pyramidal neurons and astrocytes in tissue slices obtained from the hippocampus of mice at (P2-4). These occur at very low frequency (∼2/h), can last minutes with amplitudes up to several millimolar, and mostly disappear after the first postnatal week. To further investigate their mechanisms, we model a network consisting of pyramidal neurons and interneurons. Experimentally observed Na fluctuations are mimicked when GABAergic inhibition in the simulated network is made depolarizing. Both our experiments and computational model show that blocking voltage-gated Na channels or GABAergic signaling significantly diminish the neuronal Na fluctuations. On the other hand, blocking a variety of other ion channels, receptors, or transporters including glutamatergic pathways does not have significant effects. Our model also shows that the amplitude and duration of Na fluctuations decrease as we increase the strength of glial K uptake. Furthermore, neurons with smaller somatic volumes exhibit fluctuations with higher frequency and amplitude. As opposed to this, larger extracellular to intracellular volume ratio observed in neonatal brain exerts a dampening effect. Finally, our model predicts that these periods of spontaneous Na influx leave neonatal neuronal networks more vulnerable to seizure-like states when compared with mature brain. Spontaneous activity in the neonate forebrain plays a key role in cell maturation and brain development. We report spontaneous, ultraslow, asynchronous fluctuations in the intracellular Na concentration of neurons and astrocytes. We show that this activity is not correlated with the previously reported synchronous neuronal population bursting or Ca oscillations, both of which occur at much faster timescales. Furthermore, extracellular K concentration remains nearly constant. The spontaneous Na fluctuations disappear after the first postnatal week.

摘要

人们认为,新生前脑的神经元和星形胶质细胞的自发性活动可驱动单个细胞的成熟及其整合到特定于脑区的复杂网络中。先前报道的形式包括电活动爆发和细胞内 Ca 浓度振荡。在这里,我们使用比率 Na 成像来证明从出生后 2-4 天(P2-4)的小鼠海马体组织切片中 CA1 锥体神经元和星形胶质细胞的细胞内 Na 浓度自发波动。这些波动发生的频率非常低(约 2/h),可以持续几分钟,幅度高达数毫摩尔,并且在出生后的第一周后大部分消失。为了进一步研究其机制,我们构建了一个由锥体神经元和中间神经元组成的网络模型。当模拟网络中的 GABA 能抑制变得去极化时,实验观察到的 Na 波动被模拟。我们的实验和计算模型都表明,阻断电压门控 Na 通道或 GABA 能信号显著减少神经元 Na 波动。另一方面,阻断各种其他离子通道、受体或转运体(包括谷氨酸能途径)对 Na 波动没有显著影响。我们的模型还表明,随着胶质细胞 K 摄取强度的增加,Na 波动的幅度和持续时间减小。此外,具有较小胞体体积的神经元表现出更高频率和幅度的波动。与此相反,在新生脑中观察到的较大的细胞外到细胞内体积比产生抑制作用。最后,我们的模型预测,与成熟大脑相比,这些自发的 Na 内流期使新生神经元网络更容易发生类似癫痫发作的状态。新生前脑的自发性活动在细胞成熟和大脑发育中起关键作用。我们报告神经元和星形胶质细胞细胞内 Na 浓度的自发、超慢、异步波动。我们表明,这种活动与先前报道的同步神经元群体爆发或 Ca 振荡无关,这两种情况都发生在更快的时间尺度上。此外,细胞外 K 浓度基本保持不变。自发的 Na 波动在出生后的第一周后消失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef97/7948148/7f42e7446ca1/JN-00373-2020r01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验