Suppr超能文献

北极冻原中的微生物铁氧化及其对生物地球化学循环的影响。

Microbial iron oxidation in the Arctic tundra and its implications for biogeochemical cycling.

作者信息

Emerson David, Scott Jarrod J, Benes Joshua, Bowden William B

机构信息

Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA

Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA.

出版信息

Appl Environ Microbiol. 2015 Dec;81(23):8066-75. doi: 10.1128/AEM.02832-15. Epub 2015 Sep 18.

Abstract

The role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long -149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance of Proteobacteria, with Betaproteobacteria and members of the family Comamonadaceae being the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides.

摘要

嗜中性铁氧化细菌在北极冻原中所起的作用尚不清楚。本研究调查了阿拉斯加北坡靠近图利克湖(Toolik Lake)图利克野外站(TFS)(北纬68.63,西经149.60)的化学合成铁氧化群落。微生物铁垫在静止或水流缓慢的水下栖息地很常见,其最大面积分布在湿苔原草甸的植物茎和沉积物表面。一些铁氧化细菌(FeOB)产生易于识别的鞘或柄形态类型,在我们观察到的所有垫子中都存在且占主导地位。所有地点的冷水温度(9至11°C)和降低的pH值(5.0至6.6)在动力学上有利于微生物铁氧化。基于16S rRNA基因对五个地点进行的微生物调查发现,变形菌门占优势,其中β-变形菌纲和丛毛单胞菌科成员是最普遍的操作分类单元(OTUs)。在相对丰度方面,化能自养铁氧化细菌的进化枝占群落的5%至10%。与蓝细菌和叶绿体相关的OTUs占群落的3%至25%。氧气分布表明,在一些垫子表面存在氧光合作用证据,这表明光合种群和铁氧化细菌种群共存。在采样的铁垫中,属于假定铁还原细菌(FeRB)的OTUs相对丰度平均约为11%。用10 mM乙酸盐进行厌氧培养的垫子迅速开始铁还原,这表明可能存在活跃的铁循环。冻原上铁垫的普遍存在可能通过化能自养化学合成、与铁还原耦合的有机碳厌氧呼吸以及甲烷生成的抑制来影响碳循环,并且它可能通过磷吸附到铁氧化物上而潜在地影响磷动态。

相似文献

1
Microbial iron oxidation in the Arctic tundra and its implications for biogeochemical cycling.
Appl Environ Microbiol. 2015 Dec;81(23):8066-75. doi: 10.1128/AEM.02832-15. Epub 2015 Sep 18.
2
The transition from freshwater to marine iron-oxidizing bacterial lineages along a salinity gradient on the Sheepscot River, Maine, USA.
Environ Microbiol Rep. 2013 Jun;5(3):453-63. doi: 10.1111/1758-2229.12033. Epub 2013 Mar 12.
3
Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002.
Appl Environ Microbiol. 2006 Jan;72(1):686-94. doi: 10.1128/AEM.72.1.686-694.2006.
7
Spatial distribution and biogeochemistry of redox active species in arctic sedimentary porewaters and seeps.
Environ Sci Process Impacts. 2022 Mar 23;24(3):426-438. doi: 10.1039/d1em00505g.
8
Phosphorus Interactions with Iron in Undisturbed and Disturbed Arctic Tundra Ecosystems.
Environ Sci Technol. 2024 Jul 2;58(26):11400-11410. doi: 10.1021/acs.est.3c09072. Epub 2024 Jun 18.
10
Organohalide-Respiring Bacteria at the Heart of Anaerobic Metabolism in Arctic Wet Tundra Soils.
Appl Environ Microbiol. 2021 Jan 15;87(3). doi: 10.1128/AEM.01643-20.

引用本文的文献

2
Metal Mobilization from Thawing Permafrost Is an Emergent Risk to Water Resources.
ACS ES T Water. 2024 Dec 10;5(1):20-32. doi: 10.1021/acsestwater.4c00789. eCollection 2025 Jan 10.
3
Phosphorus Interactions with Iron in Undisturbed and Disturbed Arctic Tundra Ecosystems.
Environ Sci Technol. 2024 Jul 2;58(26):11400-11410. doi: 10.1021/acs.est.3c09072. Epub 2024 Jun 18.
4
Microbial community response to hydrocarbon exposure in iron oxide mats: an environmental study.
Front Microbiol. 2024 May 10;15:1388973. doi: 10.3389/fmicb.2024.1388973. eCollection 2024.
8
Summer thaw duration is a strong predictor of the soil microbiome and its response to permafrost thaw in arctic tundra.
Environ Microbiol. 2022 Dec;24(12):6220-6237. doi: 10.1111/1462-2920.16218. Epub 2022 Oct 3.
9
A Single Bacterium Capable of Oxidation and Reduction of Iron at Circumneutral pH.
Microbiol Spectr. 2021 Sep 3;9(1):e0016121. doi: 10.1128/Spectrum.00161-21. Epub 2021 Aug 25.
10
Spatial scale structure soil bacterial communities across an Arctic landscape.
Appl Environ Microbiol. 2021 Mar 1;87(5). doi: 10.1128/AEM.02220-20. Epub 2020 Dec 23.

本文引用的文献

1
Arctic and boreal ecosystems of western North America as components of the climate system.
Glob Chang Biol. 2000 Dec;6(S1):211-223. doi: 10.1046/j.1365-2486.2000.06022.x. Epub 2002 Jan 5.
2
Microbial iron mats at the Mid-Atlantic Ridge and evidence that Zetaproteobacteria may be restricted to iron-oxidizing marine systems.
PLoS One. 2015 Mar 11;10(3):e0119284. doi: 10.1371/journal.pone.0119284. eCollection 2015.
3
Oxidation of iron causes removal of phosphorus and arsenic from streamwater in groundwater-fed lowland catchments.
Environ Sci Technol. 2015 Mar 3;49(5):2886-94. doi: 10.1021/es505834y. Epub 2015 Feb 17.
5
Unraveling the stratification of an iron-oxidizing microbial mat by metatranscriptomics.
PLoS One. 2014 Jul 17;9(7):e102561. doi: 10.1371/journal.pone.0102561. eCollection 2014.
7
Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska.
FEMS Microbiol Ecol. 2014 Aug;89(2):465-75. doi: 10.1111/1574-6941.12362.
8
The microbial ecology of permafrost.
Nat Rev Microbiol. 2014 Jun;12(6):414-25. doi: 10.1038/nrmicro3262. Epub 2014 May 12.
10
Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data.
Methods Ecol Evol. 2013 Dec 1;4(12):1111-9. doi: 10.1111/2041-210X.12114.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验