Hayati Mohsen, Nouri Moslem, Haghiri Saeed, Abbott Derek
IEEE Trans Biomed Circuits Syst. 2016 Apr;10(2):518-29. doi: 10.1109/TBCAS.2015.2450837. Epub 2015 Sep 16.
The implementation of biological neural networks is a key objective of the neuromorphic research field. Astrocytes are the largest cell population in the brain. With the discovery of calcium wave propagation through astrocyte networks, now it is more evident that neuronal networks alone may not explain functionality of the strongest natural computer, the brain. Models of cortical function must now account for astrocyte activities as well as their relationships with neurons in encoding and manipulation of sensory information. From an engineering viewpoint, astrocytes provide feedback to both presynaptic and postsynaptic neurons to regulate their signaling behaviors. This paper presents a modified neural glial interaction model that allows a convenient digital implementation. This model can reproduce relevant biological astrocyte behaviors, which provide appropriate feedback control in regulating neuronal activities in the central nervous system (CNS). Accordingly, we investigate the feasibility of a digital implementation for a single astrocyte constructed by connecting a two coupled FitzHugh Nagumo (FHN) neuron model to an implementation of the proposed astrocyte model using neuron-astrocyte interactions. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed neuron astrocyte model, with significantly low hardware cost, can mimic biological behavior such as the regulation of postsynaptic neuron activity and the synaptic transmission mechanisms.
生物神经网络的实现是神经形态研究领域的一个关键目标。星形胶质细胞是大脑中数量最多的细胞群体。随着通过星形胶质细胞网络传播钙波的发现,现在更加明显的是,仅神经元网络可能无法解释最强的天然计算机——大脑的功能。现在,皮质功能模型必须考虑星形胶质细胞的活动以及它们在编码和处理感觉信息时与神经元的关系。从工程学角度来看,星形胶质细胞向突触前和突触后神经元都提供反馈,以调节它们的信号传导行为。本文提出了一种改进的神经胶质细胞相互作用模型,该模型便于进行数字实现。该模型可以重现相关的生物星形胶质细胞行为,这些行为在调节中枢神经系统(CNS)中的神经元活动时提供适当的反馈控制。因此,我们研究了通过将两个耦合的菲茨休 - 纳古莫(FHN)神经元模型与使用神经元 - 星形胶质细胞相互作用的所提出的星形胶质细胞模型的实现相连接而构建的单个星形胶质细胞进行数字实现的可行性。硬件合成、在现场可编程门阵列(FPGA)上的物理实现以及理论分析证实,所提出的神经元 - 星形胶质细胞模型具有显著低的硬件成本,可以模拟诸如突触后神经元活动调节和突触传递机制等生物行为。