Suppr超能文献

SyNC,一种计算量巨大且逼真的神经网络,用于识别突触病变机制对自闭症和复杂神经疾病中谷氨酸能神经元及其网络的相对影响。

SyNC, a Computationally Extensive and Realistic Neural Net to Identify Relative Impacts of Synaptopathy Mechanisms on Glutamatergic Neurons and Their Networks in Autism and Complex Neurological Disorders.

作者信息

Chatterjee Rounak, Paluh Janet L, Chowdhury Souradeep, Mondal Soham, Raha Arnab, Mukherjee Amitava

机构信息

Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata, India.

SUNY Polytechnic Institute, College of Nanoscale Science and Engineering, Nanobioscience, Albany, NY, United States.

出版信息

Front Cell Neurosci. 2021 Jul 20;15:674030. doi: 10.3389/fncel.2021.674030. eCollection 2021.

Abstract

Synaptic function and experience-dependent plasticity across multiple synapses are dependent on the types of neurons interacting as well as the intricate mechanisms that operate at the molecular level of the synapse. To understand the complexity of information processing at synaptic networks will rely in part on effective computational models. Such models should also evaluate disruptions to synaptic function by multiple mechanisms. By co-development of algorithms alongside hardware, real time analysis metrics can be co-prioritized along with biological complexity. The hippocampus is implicated in autism spectrum disorders (ASD) and within this region glutamatergic neurons constitute 90% of the neurons integral to the functioning of neuronal networks. Here we generate a computational model referred to as ASD interrogator (ASDint) and corresponding hardware to enable in silicon analysis of multiple ASD mechanisms affecting glutamatergic neuron synapses. The hardware architecture Synaptic Neuronal Circuit, SyNC, is a novel GPU accelerator or neural net, that extends discovery by acting as a biologically relevant realistic neuron synapse in real time. Co-developed ASDint and SyNC expand spiking neural network models of plasticity to comparative analysis of retrograde messengers. The SyNC model is realized in an ASIC architecture, which enables the ability to compute increasingly complex scenarios without sacrificing area efficiency of the model. Here we apply the ASDint model to analyse neuronal circuitry dysfunctions associated with autism spectral disorder (ASD) synaptopathies and their effects on the synaptic learning parameter and demonstrate SyNC on an ideal ASDint scenario. Our work highlights the value of secondary pathways in regard to evaluating complex ASD synaptopathy mechanisms. By comparing the degree of variation in the synaptic learning parameter to the response obtained from simulations of the ideal scenario we determine the potency and time of the effect of a particular evaluated mechanism. Hence simulations of such scenarios in even a small neuronal network now allows us to identify relative impacts of changed parameters and their effect on synaptic function. Based on this, we can estimate the minimum fraction of a neuron exhibiting a particular dysfunction scenario required to lead to complete failure of a neural network to coordinate pre-synaptic and post-synaptic outputs.

摘要

跨多个突触的突触功能和经验依赖性可塑性取决于相互作用的神经元类型以及在突触分子水平上起作用的复杂机制。要理解突触网络中信息处理的复杂性,部分依赖于有效的计算模型。此类模型还应评估多种机制对突触功能的破坏。通过算法与硬件的共同开发,实时分析指标可以与生物学复杂性一起被共同优先考虑。海马体与自闭症谱系障碍(ASD)有关,在该区域,谷氨酸能神经元占神经网络功能不可或缺的神经元的90%。在此,我们生成了一个称为自闭症询问器(ASDint)的计算模型以及相应硬件,以实现对影响谷氨酸能神经元突触的多种自闭症机制进行硅基分析。硬件架构突触神经元电路(SyNC)是一种新型的GPU加速器或神经网络,它通过实时充当生物学相关的真实神经元突触来扩展发现。共同开发的ASDint和SyNC将可塑性的脉冲神经网络模型扩展到对逆行信使的比较分析。SyNC模型是在ASIC架构中实现的,这使得能够在不牺牲模型面积效率的情况下计算日益复杂的场景。在此,我们应用ASDint模型来分析与自闭症谱系障碍(ASD)突触病变相关的神经元回路功能障碍及其对突触学习参数的影响,并在理想的ASDint场景中展示SyNC。我们的工作突出了次级通路在评估复杂的ASD突触病变机制方面的价值。通过将突触学习参数的变化程度与从理想场景模拟中获得的响应进行比较,我们确定特定评估机制的效力和作用时间。因此,即使在一个小的神经元网络中模拟此类场景,现在也使我们能够识别参数变化的相对影响及其对突触功能的作用。基于此,我们可以估计表现出特定功能障碍场景的神经元的最小比例,该比例会导致神经网络协调突触前和突触后输出完全失败。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b304/8330424/5a684bb8ef56/fncel-15-674030-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验