Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, FI-33720, Tampere, Finland.
Neuroinformatics. 2023 Apr;21(2):375-406. doi: 10.1007/s12021-023-09622-w. Epub 2023 Mar 23.
Neural networks, composed of many neurons and governed by complex interactions between them, are a widely accepted formalism for modeling and exploring global dynamics and emergent properties in brain systems. In the past decades, experimental evidence of computationally relevant neuron-astrocyte interactions, as well as the astrocytic modulation of global neural dynamics, have accumulated. These findings motivated advances in computational glioscience and inspired several models integrating mechanisms of neuron-astrocyte interactions into the standard neural network formalism. These models were developed to study, for example, synchronization, information transfer, synaptic plasticity, and hyperexcitability, as well as classification tasks and hardware implementations. We here focus on network models of at least two neurons interacting bidirectionally with at least two astrocytes that include explicitly modeled astrocytic calcium dynamics. In this study, we analyze the evolution of these models and the biophysical, biochemical, cellular, and network mechanisms used to construct them. Based on our analysis, we propose how to systematically describe and categorize interaction schemes between cells in neuron-astrocyte networks. We additionally study the models in view of the existing experimental data and present future perspectives. Our analysis is an important first step towards understanding astrocytic contribution to brain functions. However, more advances are needed to collect comprehensive data about astrocyte morphology and physiology in vivo and to better integrate them in data-driven computational models. Broadening the discussion about theoretical approaches and expanding the computational tools is necessary to better understand astrocytes' roles in brain functions.
神经网络由许多神经元组成,这些神经元通过复杂的相互作用来进行调控,是一种广泛应用于大脑系统的建模和探索全局动态及涌现性质的形式化方法。在过去的几十年中,关于计算相关神经元-星形胶质细胞相互作用的实验证据,以及星形胶质细胞对全局神经动力学的调节作用的实验证据已经积累起来。这些发现推动了计算神经科学的发展,并激发了几种将神经元-星形胶质细胞相互作用机制整合到标准神经网络形式化方法中的模型。这些模型的开发旨在研究同步、信息传递、突触可塑性和过度兴奋等问题,以及分类任务和硬件实现。我们在这里重点介绍至少有两个神经元与至少两个星形胶质细胞双向相互作用的网络模型,这些模型包括明确建模的星形胶质细胞钙动力学。在这项研究中,我们分析了这些模型的演变以及构建它们所使用的生物物理、生化、细胞和网络机制。基于我们的分析,我们提出了如何系统地描述和分类神经元-星形胶质细胞网络中细胞之间的相互作用方案。我们还根据现有的实验数据研究了这些模型,并提出了未来的研究方向。我们的分析是理解星形胶质细胞对大脑功能的贡献的重要的第一步。然而,为了在体内收集关于星形胶质细胞形态和生理学的综合数据,并更好地将其整合到数据驱动的计算模型中,还需要更多的进展。拓宽关于理论方法的讨论并扩展计算工具是必要的,以便更好地理解星形胶质细胞在大脑功能中的作用。