Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA.
Nat Chem. 2015 Oct;7(10):785-92. doi: 10.1038/nchem.2348. Epub 2015 Sep 14.
Singlet fission presents an attractive solution to overcome the Shockley-Queisser limit by generating two triplet excitons from one singlet exciton. However, although triplet excitons are long-lived, their transport occurs through a Dexter transfer, making them slower than singlet excitons, which travel by means of a Förster mechanism. A thorough understanding of the interplay between singlet fission and exciton transport is therefore necessary to assess the potential and challenges of singlet-fission utilization. Here, we report a direct visualization of exciton transport in single tetracene crystals using transient absorption microscopy with 200 fs time resolution and 50 nm spatial precision. These measurements reveal a new singlet-mediated transport mechanism for triplets, which leads to an enhancement in effective triplet exciton diffusion of more than one order of magnitude on picosecond to nanosecond timescales. These results establish that there are optimal energetics of singlet and triplet excitons that benefit both singlet fission and exciton diffusion.
单重态裂变提供了一种有吸引力的解决方案,可以通过将一个单重态激子转化为两个三重态激子来克服 Shockley-Queisser 限制。然而,尽管三重态激子寿命较长,但它们的输运是通过 Dexter 转移发生的,这使得它们比通过Förster 机制输运的单重态激子慢。因此,为了评估单重态裂变利用的潜力和挑战,需要深入了解单重态裂变和激子输运之间的相互作用。在这里,我们使用具有 200 fs 时间分辨率和 50nm 空间精度的瞬态吸收显微镜,直接观察了单个并四苯晶体中的激子输运。这些测量揭示了三重态的一种新的单重态介导的输运机制,这导致有效三重态激子扩散在皮秒到纳秒时间尺度上增强了一个数量级以上。这些结果表明,单重态和三重态激子具有最佳的能量,这有利于单重态裂变和激子扩散。