Maslennikov Dmitry R, Maimaris Marios, Ning Haoqing, Zheng Xijia, Mondal Navendu, Bruevich Vladimir V, Pratik Saied Md, Dong Yifan, Tisch John W G, Musser Andrew J, Podzorov Vitaly, Bredas Jean-Luc, Coropceanu Veaceslav, Bakulin Artem A
Department of Chemistry and Centre for Processible Electronics, Imperial College London, London W120BZ, U.K.
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, United States.
J Am Chem Soc. 2025 Jul 9;147(27):23536-23544. doi: 10.1021/jacs.5c02993. Epub 2025 Jun 24.
Singlet fission (SF) is a multielectron process in which one singlet exciton converts into a pair of separated triplet excitons . SF is widely studied as it may help overcome the Shockley-Queisser efficiency limit for semiconductor photovoltaic cells. To elucidate and control the SF mechanism, great attention has been given to the identification of intermediate states in SF materials, which often appear elusive due to the complexity and fast time scales of the SF process. Here, we apply 14 fs-1 ms transient absorption techniques to high-purity rubrene single crystals to disentangle the intrinsic fission dynamics from the effects of defects and grain boundaries and to identify reliably the fission intermediates. Our data demonstrates that above-gap excitation directly generates a hybrid vibronically assisted mixture of singlet state and triplet-pair multiexciton , which rapidly (<100 fs) and coherently branches into pure singlet or triplet excitations. The relaxation of to is followed by a relatively slow and temperature-activated (48 meV activation energy) incoherent fission process. The SF competing pathways and intermediates revealed here unify the observations and models presented in previous studies of SF in rubrene and offer alternative strategies for the development of SF-enhanced photovoltaic materials.
单线态裂变(SF)是一个多电子过程,其中一个单线态激子转化为一对分离的三线态激子。由于SF可能有助于克服半导体光伏电池的肖克利-奎塞尔效率极限,因此受到了广泛研究。为了阐明和控制SF机制,人们高度关注SF材料中中间态的识别,由于SF过程的复杂性和快速时间尺度,这些中间态往往难以捉摸。在这里,我们将14飞秒至1毫秒的瞬态吸收技术应用于高纯度红荧烯单晶,以从缺陷和晶界的影响中分离出内在的裂变动力学,并可靠地识别裂变中间体。我们的数据表明,带隙以上的激发直接产生单线态和三线态激子对多激子的混合振动辅助态,该混合态迅速(<100飞秒)且相干地分支为纯单线态或三线态激发。从三线态对到三线态的弛豫之后是一个相对缓慢且温度激活(激活能为48毫电子伏特)的非相干裂变过程。这里揭示的SF竞争途径和中间体统一了先前红荧烯中SF研究中提出的观察结果和模型,并为开发SF增强型光伏材料提供了替代策略。