Suppr超能文献

脑岛-额纹状体网络通过适应性预测不断变化的控制需求来介导灵活的认知控制。

An insula-frontostriatal network mediates flexible cognitive control by adaptively predicting changing control demands.

作者信息

Jiang Jiefeng, Beck Jeffrey, Heller Katherine, Egner Tobias

机构信息

Center for Cognitive Neuroscience, Duke University, PO Box 90999, Durham, North Carolina 27708, USA.

Department of Psychology &Neuroscience, Duke University, PO Box 90086, Durham, North Carolina 27708, USA.

出版信息

Nat Commun. 2015 Sep 22;6:8165. doi: 10.1038/ncomms9165.

Abstract

The anterior cingulate and lateral prefrontal cortices have been implicated in implementing context-appropriate attentional control, but the learning mechanisms underlying our ability to flexibly adapt the control settings to changing environments remain poorly understood. Here we show that human adjustments to varying control demands are captured by a reinforcement learner with a flexible, volatility-driven learning rate. Using model-based functional magnetic resonance imaging, we demonstrate that volatility of control demand is estimated by the anterior insula, which in turn optimizes the prediction of forthcoming demand in the caudate nucleus. The caudate's prediction of control demand subsequently guides the implementation of proactive and reactive attentional control in dorsal anterior cingulate and dorsolateral prefrontal cortices. These data enhance our understanding of the neuro-computational mechanisms of adaptive behaviour by connecting the classic cingulate-prefrontal cognitive control network to a subcortical control-learning mechanism that infers future demands by flexibly integrating remote and recent past experiences.

摘要

前扣带回和外侧前额叶皮质被认为在实施与情境相适应的注意力控制中发挥作用,但我们灵活调整控制设置以适应不断变化的环境的能力背后的学习机制仍知之甚少。在这里,我们表明,人类对不同控制需求的调整可以被一个具有灵活、由波动性驱动的学习率的强化学习器捕捉到。使用基于模型的功能磁共振成像,我们证明控制需求的波动性由前脑岛估计,进而优化尾状核中对即将到来的需求的预测。尾状核对控制需求的预测随后指导背侧前扣带回和背外侧前额叶皮质中主动和反应性注意力控制的实施。这些数据通过将经典的扣带回-前额叶认知控制网络与一种皮层下控制学习机制相联系,增强了我们对适应性行为的神经计算机制的理解,该机制通过灵活整合远期和近期过去的经验来推断未来需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e9a/4595591/643c1c40257e/ncomms9165-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验