Suppr超能文献

灵活认知控制的贝叶斯建模

Bayesian modeling of flexible cognitive control.

作者信息

Jiang Jiefeng, Heller Katherine, Egner Tobias

机构信息

Center for Cognitive Neuroscience, Duke University, United States; Department of Psychology & Neuroscience, Duke University, United States.

Center for Cognitive Neuroscience, Duke University, United States; Department of Statistical Science, Duke University, United States.

出版信息

Neurosci Biobehav Rev. 2014 Oct;46 Pt 1:30-43. doi: 10.1016/j.neubiorev.2014.06.001. Epub 2014 Jun 11.

Abstract

"Cognitive control" describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation.

摘要

“认知控制”描述的是在常规刺激-反应关联对于实现预期目标并非最优的情况下,行为的内源性引导。这种能力背后的计算和神经机制仍知之甚少。我们研究了源于贝叶斯学习器视角应用的最新进展,该视角为控制过程提供了最优预测。在回顾贝叶斯模型在认知控制中的应用时,我们注意到当前模型的一个重要局限性在于缺乏一种合理的机制,用于灵活调整对在不同时间尺度上变化的冲突水平的控制。然后我们表明,灵活的认知控制可以通过一个具有波动性驱动学习机制的贝叶斯模型来实现,该机制在预测未来控制需求时动态调节对近期和远期经验的相对依赖。我们得出结论,关于认知控制计算机制的新兴贝叶斯视角具有很大的前景,特别是如果未来的研究能够确定这些模型所编码变量的神经基础,并确定其神经实现的性质(贝叶斯或其他)。

相似文献

1
Bayesian modeling of flexible cognitive control.灵活认知控制的贝叶斯建模
Neurosci Biobehav Rev. 2014 Oct;46 Pt 1:30-43. doi: 10.1016/j.neubiorev.2014.06.001. Epub 2014 Jun 11.
5
6
Neural Mechanisms for Adaptive Learned Avoidance of Mental Effort.适应学习避免心理努力的神经机制。
J Neurosci. 2018 Mar 7;38(10):2631-2651. doi: 10.1523/JNEUROSCI.1995-17.2018. Epub 2018 Feb 5.
9
Bayesian learning and the psychology of rule induction.贝叶斯学习与规则归纳心理学。
Cognition. 2013 May;127(2):159-76. doi: 10.1016/j.cognition.2012.11.014. Epub 2013 Mar 1.
10
Hierarchical Bayesian models of cognitive development.认知发展的分层贝叶斯模型。
Biol Cybern. 2016 Jun;110(2-3):217-27. doi: 10.1007/s00422-016-0686-6. Epub 2016 May 24.

引用本文的文献

4
Distractor-specific control adaptation in multidimensional environments.多维环境中特定干扰物的控制适应
Nat Hum Behav. 2025 Mar;9(3):534-553. doi: 10.1038/s41562-024-02088-z. Epub 2025 Jan 3.
6
Cognitive Control.认知控制
Annu Rev Psychol. 2025 Jan;76(1):167-195. doi: 10.1146/annurev-psych-022024-103901. Epub 2024 Dec 3.
7
Principles of cognitive control over task focus and task switching.对任务焦点和任务切换进行认知控制的原则。
Nat Rev Psychol. 2023 Nov;2(11):702-714. doi: 10.1038/s44159-023-00234-4. Epub 2023 Sep 27.
8
Cognitive control controls the effect of irrelevant stimulus-response learning.认知控制控制了无关刺激-反应学习的效果。
Atten Percept Psychophys. 2024 Apr;86(3):866-882. doi: 10.3758/s13414-024-02860-3. Epub 2024 Feb 27.

本文引用的文献

7
Confidence in value-based choice.基于价值的选择的信心。
Nat Neurosci. 2013 Jan;16(1):105-10. doi: 10.1038/nn.3279. Epub 2012 Dec 9.
9
Converging evidence for control of color-word Stroop interference at the item level.控制颜色-词 Stroop 干扰的项目水平的汇聚证据。
J Exp Psychol Hum Percept Perform. 2013 Apr;39(2):433-49. doi: 10.1037/a0029145. Epub 2012 Jul 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验