Jiang Jiefeng, Heller Katherine, Egner Tobias
Center for Cognitive Neuroscience, Duke University, United States; Department of Psychology & Neuroscience, Duke University, United States.
Center for Cognitive Neuroscience, Duke University, United States; Department of Statistical Science, Duke University, United States.
Neurosci Biobehav Rev. 2014 Oct;46 Pt 1:30-43. doi: 10.1016/j.neubiorev.2014.06.001. Epub 2014 Jun 11.
"Cognitive control" describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation.
“认知控制”描述的是在常规刺激-反应关联对于实现预期目标并非最优的情况下,行为的内源性引导。这种能力背后的计算和神经机制仍知之甚少。我们研究了源于贝叶斯学习器视角应用的最新进展,该视角为控制过程提供了最优预测。在回顾贝叶斯模型在认知控制中的应用时,我们注意到当前模型的一个重要局限性在于缺乏一种合理的机制,用于灵活调整对在不同时间尺度上变化的冲突水平的控制。然后我们表明,灵活的认知控制可以通过一个具有波动性驱动学习机制的贝叶斯模型来实现,该机制在预测未来控制需求时动态调节对近期和远期经验的相对依赖。我们得出结论,关于认知控制计算机制的新兴贝叶斯视角具有很大的前景,特别是如果未来的研究能够确定这些模型所编码变量的神经基础,并确定其神经实现的性质(贝叶斯或其他)。