Suppr超能文献

一种在变点问题中对贝叶斯推断进行 delta 规则逼近的混合方法。

A mixture of delta-rules approximation to bayesian inference in change-point problems.

机构信息

Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America.

出版信息

PLoS Comput Biol. 2013;9(7):e1003150. doi: 10.1371/journal.pcbi.1003150. Epub 2013 Jul 25.

Abstract

Error-driven learning rules have received considerable attention because of their close relationships to both optimal theory and neurobiological mechanisms. However, basic forms of these rules are effective under only a restricted set of conditions in which the environment is stable. Recent studies have defined optimal solutions to learning problems in more general, potentially unstable, environments, but the relevance of these complex mathematical solutions to how the brain solves these problems remains unclear. Here, we show that one such Bayesian solution can be approximated by a computationally straightforward mixture of simple error-driven 'Delta' rules. This simpler model can make effective inferences in a dynamic environment and matches human performance on a predictive-inference task using a mixture of a small number of Delta rules. This model represents an important conceptual advance in our understanding of how the brain can use relatively simple computations to make nearly optimal inferences in a dynamic world.

摘要

错误驱动的学习规则因其与最优理论和神经生物学机制的密切关系而受到广泛关注。然而,这些规则的基本形式仅在环境稳定的有限条件下有效。最近的研究已经为更一般的、潜在不稳定的环境中的学习问题定义了最优解,但这些复杂的数学解与大脑如何解决这些问题的相关性尚不清楚。在这里,我们表明,这样的贝叶斯解可以通过一种简单的、基于错误驱动的“Delta”规则的混合来近似。这个更简单的模型可以在动态环境中进行有效的推断,并且在使用少数几个 Delta 规则的混合的预测推断任务中匹配人类的表现。这个模型代表了我们理解大脑如何在动态世界中使用相对简单的计算来进行几乎最优推断的一个重要概念上的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a808/3723502/98cb2c071283/pcbi.1003150.g001.jpg

相似文献

3
A unified Bayesian framework for MEG/EEG source imaging.用于脑磁图/脑电图源成像的统一贝叶斯框架。
Neuroimage. 2009 Feb 1;44(3):947-66. doi: 10.1016/j.neuroimage.2008.02.059. Epub 2008 Mar 18.
4
A new method of Bayesian causal inference in non-stationary environments.一种新的非平稳环境下贝叶斯因果推断方法。
PLoS One. 2020 May 22;15(5):e0233559. doi: 10.1371/journal.pone.0233559. eCollection 2020.
8
Bayesian estimation of beta mixture models with variational inference.贝叶斯估计的β混合模型的变分推断。
IEEE Trans Pattern Anal Mach Intell. 2011 Nov;33(11):2160-73. doi: 10.1109/TPAMI.2011.63.
9
Towards a cross-level understanding of Bayesian inference in the brain.迈向大脑中贝叶斯推理的跨层次理解。
Neurosci Biobehav Rev. 2022 Jun;137:104649. doi: 10.1016/j.neubiorev.2022.104649. Epub 2022 Apr 5.
10
Lifelong Incremental Reinforcement Learning With Online Bayesian Inference.终身增量强化学习与在线贝叶斯推断。
IEEE Trans Neural Netw Learn Syst. 2022 Aug;33(8):4003-4016. doi: 10.1109/TNNLS.2021.3055499. Epub 2022 Aug 3.

引用本文的文献

3
Understanding learning through uncertainty and bias.通过不确定性和偏差来理解学习。
Commun Psychol. 2025 Feb 13;3(1):24. doi: 10.1038/s44271-025-00203-y.
6
Belief Updating in Subclinical and Clinical Delusions.亚临床和临床妄想中的信念更新
Schizophr Bull Open. 2022 Dec 14;4(1):sgac074. doi: 10.1093/schizbullopen/sgac074. eCollection 2023 Jan.

本文引用的文献

1
One and done? Optimal decisions from very few samples.一劳永逸?基于极少样本的最优决策。
Cogn Sci. 2014 May-Jun;38(4):599-637. doi: 10.1111/cogs.12101. Epub 2014 Jan 28.
10
Posterior cingulate cortex: adapting behavior to a changing world.后扣带皮层:使行为适应不断变化的世界。
Trends Cogn Sci. 2011 Apr;15(4):143-51. doi: 10.1016/j.tics.2011.02.002. Epub 2011 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验