Sattari Vayghan Hamed, Nawrocki Wojciech J, Schiphorst Christo, Tolleter Dimitri, Hu Chen, Douet Véronique, Glauser Gaëtan, Finazzi Giovanni, Croce Roberta, Wientjes Emilie, Longoni Fiamma
Laboratory of Plant Physiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
Front Plant Sci. 2022 Mar 7;13:833032. doi: 10.3389/fpls.2022.833032. eCollection 2022.
Light absorbed by chlorophylls of Photosystems II and I drives oxygenic photosynthesis. Light-harvesting complexes increase the absorption cross-section of these photosystems. Furthermore, these complexes play a central role in photoprotection by dissipating the excess of absorbed light energy in an inducible and regulated fashion. In higher plants, the main light-harvesting complex is trimeric LHCII. In this work, we used CRISPR/Cas9 to knockout the five genes encoding LHCB1, which is the major component of LHCII. In absence of LHCB1, the accumulation of the other LHCII isoforms was only slightly increased, thereby resulting in chlorophyll loss, leading to a pale green phenotype and growth delay. The Photosystem II absorption cross-section was smaller, while the Photosystem I absorption cross-section was unaffected. This altered the chlorophyll repartition between the two photosystems, favoring Photosystem I excitation. The equilibrium of the photosynthetic electron transport was partially maintained by lower Photosystem I over Photosystem II reaction center ratio and by the dephosphorylation of LHCII and Photosystem II. Loss of LHCB1 altered the thylakoid structure, with less membrane layers per grana stack and reduced grana width. Stable LHCB1 knockout lines allow characterizing the role of this protein in light harvesting and acclimation and pave the way for future mutational analyses of LHCII.
光系统II和I的叶绿素吸收的光驱动了产氧光合作用。捕光复合体增加了这些光系统的吸收截面。此外,这些复合体通过以可诱导和受调控的方式耗散过量吸收的光能,在光保护中发挥核心作用。在高等植物中,主要的捕光复合体是三聚体LHCII。在这项工作中,我们使用CRISPR/Cas9敲除了编码LHCII主要成分LHCB1的五个基因。在没有LHCB1的情况下,其他LHCII亚型的积累仅略有增加,从而导致叶绿素损失,导致淡绿色表型和生长延迟。光系统II的吸收截面较小,而光系统I的吸收截面不受影响。这改变了两个光系统之间的叶绿素分配,有利于光系统I的激发。光合电子传递的平衡通过较低的光系统I与光系统II反应中心比率以及LHCII和光系统II的去磷酸化得以部分维持。LHCB1的缺失改变了类囊体结构,每个基粒堆叠的膜层数减少,基粒宽度减小。稳定的LHCB1敲除系有助于表征该蛋白在光捕获和适应中的作用,并为未来LHCII的突变分析铺平道路。