Department of Life Technologies, Molecular Plant Biology, University of Turku, Turku, FI-20014, Finland.
Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, 60131, Italy.
Plant Physiol. 2022 Aug 29;190(1):698-713. doi: 10.1093/plphys/kiac294.
Reversible thylakoid protein phosphorylation provides most flowering plants with dynamic acclimation to short-term changes in environmental light conditions. Here, through generating Serine/Threonine protein kinase 7 (STN7)-depleted mutants in the moss Physcomitrella (Physcomitrium patens), we identified phosphorylation targets of STN7 kinase and their roles in short- and long-term acclimation of the moss to changing light conditions. Biochemical and mass spectrometry analyses revealed STN7-dependent phosphorylation of N-terminal Thr in specific Light-Harvesting Complex II (LHCII) trimer subunits (LHCBM2 and LHCBM4/8) and provided evidence that phospho-LHCBM accumulation is responsible for the assembly of two distinct Photosystem I (PSI) supercomplexes (SCs), both of which are largely absent in STN7-depleted mutants. Besides the canonical state transition complex (PSI-LHCI-LHCII), we isolated the larger moss-specific PSI-Large (PSI-LHCI-LHCB9-LHCII) from stroma-exposed thylakoids. Unlike PSI-LHCI-LHCII, PSI-Large did not demonstrate short-term dynamics for balancing the distribution of excitation energy between PSII and PSI. Instead, PSI-Large contributed to a more stable increase in PSI antenna size in Physcomitrella, except under prolonged high irradiance. Additionally, the STN7-depleted mutants revealed altered light-dependent phosphorylation of a monomeric antenna protein, LHCB6, whose phosphorylation displayed a complex regulation by multiple kinases. Collectively, the unique phosphorylation plasticity and dynamics of Physcomitrella monomeric LHCB6 and trimeric LHCBM isoforms, together with the presence of PSI SCs with different antenna sizes and responsiveness to light changes, reflect the evolutionary position of mosses between green algae and vascular plants, yet with clear moss-specific features emphasizing their adaptation to terrestrial low-light environments.
可逆的类囊体蛋白磷酸化使大多数开花植物能够动态适应环境光条件的短期变化。在这里,我们通过在苔藓 Physcomitrella(Physcomitrium patens)中生成丝氨酸/苏氨酸蛋白激酶 7(STN7)缺失突变体,鉴定了 STN7 激酶的磷酸化靶标及其在苔藓对不断变化的光照条件的短期和长期适应中的作用。生化和质谱分析表明,STN7 依赖性磷酸化 LHCII 三聚体亚基(LHCBM2 和 LHCBM4/8)的 N 端 Thr,并且提供了证据表明磷酸化 LHCBM 的积累是负责两种不同的光系统 I(PSI)超复合体(SCs)的组装,这两种复合体在 STN7 缺失突变体中大部分都不存在。除了典型的状态转换复合物(PSI-LHCI-LHCII)外,我们还从基质暴露的类囊体中分离出了更大的苔藓特异性 PSI-Large(PSI-LHCI-LHCB9-LHCII)。与 PSI-LHCI-LHCII 不同,PSI-Large 没有表现出短期动力学来平衡 PSII 和 PSI 之间的激发能分布。相反,PSI-Large 有助于 Physcomitrella 中 PSI 天线尺寸更稳定的增加,除非长时间处于高光强下。此外,STN7 缺失突变体显示出单体天线蛋白 LHCB6 的光依赖性磷酸化的改变,其磷酸化受到多种激酶的复杂调节。总的来说,Physcomitrella 单体 LHCB6 和三聚体 LHCBM 同工型的独特磷酸化可塑性和动力学,以及具有不同天线大小和对光变化响应的 PSI SC 的存在,反映了苔藓在绿藻和维管植物之间的进化地位,但具有明显的苔藓特异性特征,强调了它们对陆地低光环境的适应。