Suppr超能文献

构建用于医疗保健和公共卫生中身份解析的本体。

Building an Ontology for Identity Resolution in Healthcare and Public Health.

作者信息

Duncan Jeffrey, Eilbeck Karen, Narus Scott P, Clyde Stephen, Thornton Sidney, Staes Catherine

机构信息

Department of Biomedical Informatics, University of Utah, Salt Lake City, UT USA.

Department of Biomedical Informatics, University of Utah, Salt Lake City, UT USA ; Intermountain Healthcare, Salt Lake City, UT USA.

出版信息

Online J Public Health Inform. 2015 Jul 1;7(2):e219. doi: 10.5210/ojphi.v7i2.6010. eCollection 2015.

Abstract

UNLABELLED

Integration of disparate information from electronic health records, clinical data warehouses, birth certificate registries and other public health information systems offers great potential for clinical care, public health practice, and research. Such integration, however, depends on correctly matching patient-specific records using demographic identifiers. Without standards for these identifiers, record linkage is complicated by issues of structural and semantic heterogeneity.

OBJECTIVES

Our objectives were to develop and validate an ontology to: 1) identify components of identity and events subsequent to birth that result in creation, change, or sharing of identity information; 2) develop an ontology to facilitate data integration from multiple healthcare and public health sources; and 3) validate the ontology's ability to model identity-changing events over time.

METHODS

We interviewed domain experts in area hospitals and public health programs and developed process models describing the creation and transmission of identity information among various organizations for activities subsequent to a birth event. We searched for existing relevant ontologies. We validated the content of our ontology with simulated identity information conforming to scenarios identified in our process models.

RESULTS

We chose the Simple Event Model (SEM) to describe events in early childhood and integrated the Clinical Element Model (CEM) for demographic information. We demonstrated the ability of the combined SEM-CEM ontology to model identity events over time.

CONCLUSION

The use of an ontology can overcome issues of semantic and syntactic heterogeneity to facilitate record linkage.

摘要

未标注

整合来自电子健康记录、临床数据仓库、出生证明登记处及其他公共卫生信息系统的不同信息,对于临床护理、公共卫生实践及研究具有巨大潜力。然而,这种整合依赖于使用人口统计学标识符正确匹配特定患者的记录。如果没有这些标识符的标准,记录链接会因结构和语义异质性问题而变得复杂。

目的

我们的目的是开发并验证一种本体,以:1)识别出生后导致身份信息创建、变更或共享的身份组成部分及事件;2)开发一种本体以促进来自多个医疗保健和公共卫生来源的数据整合;3)验证该本体对随时间变化的身份变更事件进行建模的能力。

方法

我们采访了地区医院和公共卫生项目的领域专家,并开发了流程模型,描述出生事件后各种组织之间身份信息的创建和传输。我们搜索了现有的相关本体。我们使用符合流程模型中确定场景的模拟身份信息验证了本体的内容。

结果

我们选择简单事件模型(SEM)来描述幼儿期的事件,并整合了临床元素模型(CEM)用于人口统计学信息。我们展示了组合的SEM - CEM本体随时间对身份事件进行建模的能力。

结论

本体的使用可以克服语义和句法异质性问题,以促进记录链接。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9359/4576444/0a8ef3d0c340/ojphi-07-e219-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验