Systems Assessment Group, Energy Systems Division, Argonne National Laboratory , Argonne, Illinois 60439, United States.
Environ Sci Technol. 2015 Oct 20;49(20):12535-42. doi: 10.1021/acs.est.5b03192. Epub 2015 Oct 7.
This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and updating Argonne National Laboratory's GREET model) associated with material pair substitutions. Several vehicle parts are lightweighted via material substitution, using substitution ratios from a U.S. Department of Energy report, to determine GHG emissions. We then examine fuel-cycle GHG reductions from lightweighting. The fuel reduction value methodology is applied using FRV estimates of 0.15-0.25, and 0.25-0.5 L/(100km·100 kg), with and without powertrain adjustments, respectively. GHG breakeven values are derived for both driving distance and material substitution ratio. While material substitution can reduce vehicle weight, it often increases vehicle-cycle GHGs. It is likely that replacing steel (the dominant vehicle material) with wrought aluminum, carbon fiber reinforced plastic (CRFP), or magnesium will increase vehicle-cycle GHGs. However, lifetime fuel economy benefits often outweigh the vehicle-cycle, resulting in a net total life-cycle GHG benefit. This is the case for steel replaced by wrought aluminum in all assumed cases, and for CFRP and magnesium except for high substitution ratio and low FRV.
本研究考察了将轻量化材料替代到车辆中对车辆循环和整车全生命周期的影响。我们通过收集材料替代数据并结合已知的基于质量的温室气体(GHG)比(使用和更新阿贡国家实验室的 GREET 模型)来确定基于部件的温室气体排放比,这些比与材料对的替代有关。通过使用美国能源部报告中的替代比,对几种车辆部件进行了轻量化处理,以确定温室气体排放。然后,我们研究了轻量化带来的燃料循环温室气体减排。使用 FRV 估计值 0.15-0.25 和 0.25-0.5 L/(100km·100 kg)(分别有和没有动力传动系统调整)应用燃料减少值方法。为驾驶距离和材料替代比分别推导出了 GHG 平衡点。虽然材料替代可以减轻车辆重量,但它往往会增加车辆循环的温室气体排放。用锻造铝、碳纤维增强塑料(CRFP)或镁替代钢(车辆的主要材料)很可能会增加车辆循环的温室气体排放。然而,由于使用寿命的燃油经济性优势往往超过了车辆循环,因此总生命周期温室气体排放的净效益是正向的。在所有假设的情况下,用锻造铝替代钢就是这种情况,而对于 CFRP 和镁,只有在高替代比和低 FRV 的情况下才会出现这种情况。