Suppr超能文献

通过多变量技术比较产酒精非酿酒酵母与酿酒酵母中乙醇胁迫与细胞脂肪酸组成之间的相关性。

Correlation between ethanol stress and cellular fatty acid composition of alcohol producing non-Saccharomyces in comparison with Saccharomyces cerevisiae by multivariate techniques.

作者信息

Archana K M, Ravi R, Anu-Appaiah K A

机构信息

Department of Food Microbiology, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka India.

Department of Sensory Science, Council of Scientific and Industrial Research (CSIR)-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka India.

出版信息

J Food Sci Technol. 2015 Oct;52(10):6770-6. doi: 10.1007/s13197-015-1762-y. Epub 2015 Feb 19.

Abstract

Wine production is a complex process both from biochemical and microbiological point of view in which yeast plays a central role. The use of the wine yeast Saccharomyces cerevisiae and non- Saccharomyces yeasts as mixed starter cultures for wine fermentations is of increasing interest to enhance the quality of wine.The most common stress, yeast cells encounter during wine fermentation is the increase in ethanol concentration.To enhance ethanol tolerance, alteration in the cellular lipid composition is one of its defence mechanism. Ethanol tolerance and cellular fatty acid composition of alcohol producing non Saccharomyces forms were compared with enological strains of Sacccharomyces cerevisiae. Saccharomyces cerevisiae used for the study, tolerated 15 % of ethanol and the non Saccharomyces strains such as, Issatchenkia occidentalis and Issatchenkia orientalis tolerated 10 % of ethanol. On exposure of Saccharomyces cerevisiae to ethanol stress, the proportion of monounsaturated fatty acids increased with concomitant decrease in saturated fatty acids. Decrease in monounsaturated fatty acids, exhibited by non-Saccharomyces yeasts when exposed to ethanol stress, could be one of the reasons for their inability to withstand more than 10 % of alcohol. Multivariate techniques of data analysis - principal component analysis and linear discriminant analysis were employed in order to establish differentiation criteria as function of yeast strains, alcohol stress and their fatty acid profile. Based on the data, Chemometrics, such as principal component analysis and discriminant function analysis, can be successfully applied to fatty acid data to categorize the yeast.

摘要

从生化和微生物学角度来看,葡萄酒生产是一个复杂的过程,其中酵母起着核心作用。使用葡萄酒酵母酿酒酵母和非酿酒酵母作为葡萄酒发酵的混合发酵剂培养物,对于提高葡萄酒质量越来越受到关注。葡萄酒发酵过程中酵母细胞遇到的最常见压力是乙醇浓度的增加。为了提高乙醇耐受性,细胞脂质组成的改变是其防御机制之一。将产酒精的非酿酒酵母菌株的乙醇耐受性和细胞脂肪酸组成与酿酒酵母的酿酒菌株进行了比较。用于该研究的酿酒酵母能耐受15%的乙醇,而诸如西方伊萨酵母和东方伊萨酵母等非酿酒酵母菌株能耐受10%的乙醇。当酿酒酵母暴露于乙醇胁迫时,单不饱和脂肪酸的比例增加,同时饱和脂肪酸减少。非酿酒酵母在暴露于乙醇胁迫时表现出的单不饱和脂肪酸减少,可能是它们无法耐受超过10%酒精的原因之一。采用数据分析的多变量技术——主成分分析和线性判别分析,以建立作为酵母菌株、酒精胁迫及其脂肪酸谱函数的区分标准。基于这些数据,化学计量学,如主成分分析和判别函数分析,可以成功地应用于脂肪酸数据以对酵母进行分类。

相似文献

2
Occurrence and enological properties of two new non-conventional yeasts (Nakazawaea ishiwadae and Lodderomyces elongisporus) in wine fermentations.
Int J Food Microbiol. 2019 Sep 16;305:108255. doi: 10.1016/j.ijfoodmicro.2019.108255. Epub 2019 Jun 20.
3
Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.
Food Microbiol. 2011 Aug;28(5):873-82. doi: 10.1016/j.fm.2010.12.001. Epub 2010 Dec 10.
6
Cellular death of two non-Saccharomyces wine-related yeasts during mixed fermentations with Saccharomyces cerevisiae.
Int J Food Microbiol. 2006 May 1;108(3):336-45. doi: 10.1016/j.ijfoodmicro.2005.12.012. Epub 2006 Mar 27.
8
9
Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2017 Mar;101(6):2479-2491. doi: 10.1007/s00253-016-8001-y. Epub 2016 Dec 2.
10
The role of the membrane lipid composition in the oxidative stress tolerance of different wine yeasts.
Food Microbiol. 2019 Apr;78:143-154. doi: 10.1016/j.fm.2018.10.001. Epub 2018 Oct 12.

引用本文的文献

1
Human Sterols Are Overproduced, Stored and Excreted in Yeasts.
Int J Mol Sci. 2024 Jan 8;25(2):781. doi: 10.3390/ijms25020781.
4
Species-Dependent Metabolic Response to Lipid Mixtures in Wine Yeasts.
Front Microbiol. 2022 May 23;13:823581. doi: 10.3389/fmicb.2022.823581. eCollection 2022.
5
Protein kinases Elm1 and Sak1 of Saccharomyces cerevisiae exerted different functions under high-glucose and heat shock stresses.
Appl Microbiol Biotechnol. 2022 Mar;106(5-6):2029-2042. doi: 10.1007/s00253-022-11840-2. Epub 2022 Feb 23.
9
Transcriptome profiling of Issatchenkia orientalis under ethanol stress.
AMB Express. 2018 Mar 13;8(1):39. doi: 10.1186/s13568-018-0568-5.

本文引用的文献

2
Screening wild yeast strains for alcohol fermentation from various fruits.
Mycobiology. 2011 Mar;39(1):33-9. doi: 10.4489/MYCO.2011.39.1.033. Epub 2011 Mar 23.
3
A higher spirit: avoiding yeast suicide during alcoholic fermentation.
Cell Death Differ. 2012 Jun;19(6):913-4. doi: 10.1038/cdd.2012.31.
4
Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.
Food Microbiol. 2011 Aug;28(5):873-82. doi: 10.1016/j.fm.2010.12.001. Epub 2010 Dec 10.
5
Mechanisms of ethanol tolerance in Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2010 Jul;87(3):829-45. doi: 10.1007/s00253-010-2594-3. Epub 2010 May 13.
6
Tolerance and stress response to ethanol in the yeast Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2009 Nov;85(2):253-63. doi: 10.1007/s00253-009-2223-1. Epub 2009 Sep 16.
8
Relationship between ethanol tolerance, H+ -ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains.
Int J Food Microbiol. 2006 Jul 1;110(1):34-42. doi: 10.1016/j.ijfoodmicro.2006.02.002. Epub 2006 May 11.
9
Winemaking biochemistry and microbiology: current knowledge and future trends.
Crit Rev Food Sci Nutr. 2005;45(4):265-86. doi: 10.1080/10408690490478118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验