Department of Computing and Information Systems, The University of Melbourne, Australia.
Department of Computing and Information Systems, The University of Melbourne, Australia.
Comput Med Imaging Graph. 2015 Oct;45:102-11. doi: 10.1016/j.compmedimag.2015.08.005. Epub 2015 Sep 19.
White matter lesions (WMLs) are small groups of dead cells that clump together in the white matter of brain. In this paper, we propose a reliable method to automatically segment WMLs. Our method uses a novel filter to enhance the intensity of WMLs. Then a feature set containing enhanced intensity, anatomical and spatial information is used to train a random forest classifier for the initial segmentation of WMLs. Following that a reliable and robust edge potential function based Markov Random Field (MRF) is proposed to obtain the final segmentation by removing false positive WMLs. Quantitative evaluation of the proposed method is performed on 24 subjects of ENVISion study. The segmentation results are validated against the manual segmentation, performed under the supervision of an expert neuroradiologist. The results show a dice similarity index of 0.76 for severe lesion load, 0.73 for moderate lesion load and 0.61 for mild lesion load. In addition to that we have compared our method with three state of the art methods on 20 subjects of Medical Image Computing and Computer Aided Intervention Society's (MICCAI's) MS lesion challenge dataset, where our method shows better segmentation accuracy compare to the state of the art methods. These results indicate that the proposed method can assist the neuroradiologists in assessing the WMLs in clinical practice.
脑白质病变(WML)是指大脑白质中聚集在一起的一小群死亡细胞。在本文中,我们提出了一种可靠的自动分割 WML 的方法。我们的方法使用一种新颖的滤波器来增强 WML 的强度。然后,使用包含增强强度、解剖和空间信息的特征集来训练随机森林分类器,对 WML 进行初始分割。之后,提出了一种可靠和稳健的基于边缘势函数的马尔可夫随机场(MRF),通过去除假阳性的 WML 来获得最终分割。在 24 名 ENVISion 研究对象上对所提出的方法进行了定量评估。分割结果与在专家神经放射科医生监督下进行的手动分割进行了验证。结果表明,严重病变负荷的骰子相似性指数为 0.76,中度病变负荷为 0.73,轻度病变负荷为 0.61。此外,我们还在 20 名 MICCAI 脑 MS 病变挑战赛数据集的对象上,将我们的方法与三种最先进的方法进行了比较,我们的方法的分割精度优于最先进的方法。这些结果表明,所提出的方法可以帮助神经放射科医生在临床实践中评估 WML。