Suppr超能文献

磁共振成像(MRI)上白质病变向自动脑组织分割的扩展

White matter lesion extension to automatic brain tissue segmentation on MRI.

作者信息

de Boer Renske, Vrooman Henri A, van der Lijn Fedde, Vernooij Meike W, Ikram M Arfan, van der Lugt Aad, Breteler Monique M B, Niessen Wiro J

机构信息

Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus MC, Rotterdam, the Netherlands.

出版信息

Neuroimage. 2009 May 1;45(4):1151-61. doi: 10.1016/j.neuroimage.2009.01.011.

Abstract

A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.

摘要

一种全自动脑组织分割方法通过白质病变分割进行了优化和扩展。在多模态磁共振成像数据上,通过基于图谱的k近邻分类器对脑脊液(CSF)、灰质(GM)和白质(WM)进行分割。该分类器通过将脑图谱配准到受试者来进行训练。所得的GM分割用于在液体衰减反转恢复扫描中自动找到白质病变(WML)阈值。通过确保病变位于白质内来去除假阳性病变。该方法在一组209名受试者上进行了视觉验证。在98%的脑组织分割和97%的WML分割中未发现分割错误。对6名受试者的子集进行了CSF、GM和WM分割的手动分割定量评估,对另外14名受试者进行了WML分割的定量评估。结果表明,自动分割精度接近手动分割的观察者间变异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验