Suppr超能文献

来自心脏生理计算模型个性化的临床诊断生物标志物。

Clinical Diagnostic Biomarkers from the Personalization of Computational Models of Cardiac Physiology.

作者信息

Lamata Pablo, Cookson Andrew, Smith Nic

机构信息

Division of Imaging Sciences and Biomedical Engineering, King's College London, Lambeth Wing, St. Thomas' Hospital, London, UK.

Faculty of Engineering, University of Auckland, 20 Symonds St, Private Bag 92019, Auckland, 1142, New Zealand.

出版信息

Ann Biomed Eng. 2016 Jan;44(1):46-57. doi: 10.1007/s10439-015-1439-8. Epub 2015 Sep 23.

Abstract

Computational modelling of the heart is rapidly advancing to the point of clinical utility. However, the difficulty of parameterizing and validating models from clinical data indicates that the routine application of truly predictive models remains a significant challenge. We argue there is significant value in an intermediate step towards prediction. This step is the use of biophysically based models to extract clinically useful information from existing patient data. Specifically in this paper we review methodologies for applying modelling frameworks for this goal in the areas of quantifying cardiac anatomy, estimating myocardial stiffness and optimizing measurements of coronary perfusion. Using these indicative examples of the general overarching approach, we finally discuss the value, ongoing challenges and future potential for applying biophysically based modelling in the clinical context.

摘要

心脏的计算建模正在迅速发展到具有临床实用性的阶段。然而,从临床数据对模型进行参数化和验证的困难表明,真正具有预测性的模型的常规应用仍然是一项重大挑战。我们认为,在迈向预测的中间步骤中存在重大价值。这一步骤是使用基于生物物理学的模型从现有患者数据中提取临床有用信息。具体而言,在本文中,我们回顾了在量化心脏解剖结构、估计心肌僵硬度和优化冠状动脉灌注测量等领域为实现这一目标而应用建模框架的方法。通过这些总体方法的指示性示例,我们最后讨论了在临床环境中应用基于生物物理学的建模的价值、持续挑战和未来潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验