Suppr超能文献

左心房解剖结构的新型计算分析可改善消融术后房颤复发的预测。

Novel Computational Analysis of Left Atrial Anatomy Improves Prediction of Atrial Fibrillation Recurrence after Ablation.

作者信息

Varela Marta, Bisbal Felipe, Zacur Ernesto, Berruezo Antonio, Aslanidi Oleg V, Mont Lluis, Lamata Pablo

机构信息

Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London London, UK.

Arrhythmia Unit-Heart Institute (iCor), Hospital Universitari Germans Trias i Pujol Badalona, Spain.

出版信息

Front Physiol. 2017 Feb 14;8:68. doi: 10.3389/fphys.2017.00068. eCollection 2017.

Abstract

The left atrium (LA) can change in size and shape due to atrial fibrillation (AF)-induced remodeling. These alterations can be linked to poorer outcomes of AF ablation. In this study, we propose a novel comprehensive computational analysis of LA anatomy to identify what features of LA shape can optimally predict post-ablation AF recurrence. To this end, we construct smooth 3D geometrical models from the segmentation of the LA blood pool captured in pre-procedural MR images. We first apply this methodology to characterize the LA anatomy of 144 AF patients and build a statistical shape model that includes the most salient variations in shape across this cohort. We then perform a discriminant analysis to optimally distinguish between recurrent and non-recurrent patients. From this analysis, we propose a new shape metric called vertical asymmetry, which measures the imbalance of size along the anterior to posterior direction between the superior and inferior left atrial hemispheres. Vertical asymmetry was found, in combination with LA sphericity, to be the best predictor of post-ablation recurrence at both 12 and 24 months (area under the ROC curve: 0.71 and 0.68, respectively) outperforming other shape markers and any of their combinations. We also found that model-derived shape metrics, such as the anterior-posterior radius, were better predictors than equivalent metrics taken directly from MRI or echocardiography, suggesting that the proposed approach leads to a reduction of the impact of data artifacts and noise. This novel methodology contributes to an improved characterization of LA organ remodeling and the reported findings have the potential to improve patient selection and risk stratification for catheter ablations in AF.

摘要

由于心房颤动(AF)引起的重塑,左心房(LA)的大小和形状会发生变化。这些改变可能与AF消融的较差结果相关。在本研究中,我们提出了一种新颖的LA解剖结构综合计算分析方法,以确定LA形状的哪些特征能够最佳预测消融后AF复发。为此,我们从术前MR图像中捕获的LA血池分割构建平滑的3D几何模型。我们首先应用这种方法来表征144例AF患者的LA解剖结构,并建立一个统计形状模型,该模型包括该队列中形状最显著的变化。然后,我们进行判别分析,以最佳地区分复发和未复发患者。通过该分析,我们提出了一种新的形状度量,称为垂直不对称性,它测量左上心房和左下心房半球之间前后方向上大小的不平衡。发现垂直不对称性与LA球形度相结合,是12个月和24个月时消融后复发的最佳预测指标(ROC曲线下面积分别为0.71和0.68),优于其他形状标记及其任何组合。我们还发现,模型衍生的形状度量,如前后半径,比直接从MRI或超声心动图获取的等效度量更能预测,这表明所提出的方法可减少数据伪影和噪声的影响。这种新颖的方法有助于更好地表征LA器官重塑,并且所报告的结果有可能改善AF导管消融的患者选择和风险分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0af/5306209/40e163d91e59/fphys-08-00068-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验