Suppr超能文献

犬类健康监测方法。

Approaches to canine health surveillance.

作者信息

O'Neill Dan G, Church David B, McGreevy Paul D, Thomson Peter C, Brodbelt Dave C

机构信息

Faculty of Veterinary Science, The University of Sydney, R.M.C. Gunn Building (B19), Sydney, NSW 2006 Australia.

出版信息

Canine Genet Epidemiol. 2014 Apr 16;1:2. doi: 10.1186/2052-6687-1-2. eCollection 2014.

Abstract

Effective canine health surveillance systems can be used to monitor disease in the general population, prioritise disorders for strategic control and focus clinical research, and to evaluate the success of these measures. The key attributes for optimal data collection systems that support canine disease surveillance are representativeness of the general population, validity of disorder data and sustainability. Limitations in these areas present as selection bias, misclassification bias and discontinuation of the system respectively. Canine health data sources are reviewed to identify their strengths and weaknesses for supporting effective canine health surveillance. Insurance data benefit from large and well-defined denominator populations but are limited by selection bias relating to the clinical events claimed and animals covered. Veterinary referral clinical data offer good reliability for diagnoses but are limited by referral bias for the disorders and animals included. Primary-care practice data have the advantage of excellent representation of the general dog population and recording at the point of care by veterinary professionals but may encounter misclassification problems and technical difficulties related to management and analysis of large datasets. Questionnaire surveys offer speed and low cost but may suffer from low response rates, poor data validation, recall bias and ill-defined denominator population information. Canine health scheme data benefit from well-characterised disorder and animal data but reflect selection bias during the voluntary submissions process. Formal UK passive surveillance systems are limited by chronic under-reporting and selection bias. It is concluded that active collection systems using secondary health data provide the optimal resource for canine health surveillance.

摘要

有效的犬类健康监测系统可用于监测一般犬类群体中的疾病,确定战略控制的疾病优先级并聚焦临床研究,以及评估这些措施的成效。支持犬类疾病监测的最佳数据收集系统的关键属性包括一般犬类群体的代表性、疾病数据的有效性和可持续性。这些方面的局限性分别表现为选择偏倚、错误分类偏倚和系统中断。对犬类健康数据来源进行了审查,以确定它们在支持有效的犬类健康监测方面的优缺点。保险数据得益于庞大且定义明确的分母群体,但受到与索赔临床事件和承保动物相关的选择偏倚的限制。兽医转诊临床数据在诊断方面具有良好的可靠性,但受到所纳入疾病和动物的转诊偏倚的限制。初级保健实践数据的优势在于能很好地代表一般犬类群体,并由兽医专业人员在护理点进行记录,但可能会遇到错误分类问题以及与大型数据集管理和分析相关的技术困难。问卷调查速度快且成本低,但可能存在回复率低、数据验证差、回忆偏倚以及分母群体信息定义不明确的问题。犬类健康计划数据受益于特征明确的疾病和动物数据,但在自愿提交过程中反映出选择偏倚。英国正式的被动监测系统受到长期报告不足和选择偏倚的限制。得出的结论是,使用二级健康数据的主动收集系统为犬类健康监测提供了最佳资源。

相似文献

1
Approaches to canine health surveillance.犬类健康监测方法。
Canine Genet Epidemiol. 2014 Apr 16;1:2. doi: 10.1186/2052-6687-1-2. eCollection 2014.
5
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10

引用本文的文献

5
Utilising a livestock model for wildlife health planning.利用家畜模型进行野生动物健康规划。
Front Vet Sci. 2024 Nov 27;11:1466740. doi: 10.3389/fvets.2024.1466740. eCollection 2024.

本文引用的文献

2
Longevity and mortality of owned dogs in England.英国犬的寿命与死亡率。
Vet J. 2013 Dec;198(3):638-43. doi: 10.1016/j.tvjl.2013.09.020. Epub 2013 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验