Suppr超能文献

模拟驾驶过程中基于预期脑电的动作预测。

Action prediction based on anticipatory brain potentials during simulated driving.

作者信息

Khaliliardali Zahra, Chavarriaga Ricardo, Gheorghe Lucian Andrei, Millán José del R

机构信息

Defitech Chair in Brain-Machine Interface, Center for Neuroprosthetics, Institute of Bioengineering and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech H4, 1202, Geneva, Switzerland.

出版信息

J Neural Eng. 2015 Dec;12(6):066006. doi: 10.1088/1741-2560/12/6/066006. Epub 2015 Sep 24.

Abstract

OBJECTIVE

The ability of an automobile to infer the driver's upcoming actions directly from neural signals could enrich the interaction of the car with its driver. Intelligent vehicles fitted with an on-board brain-computer interface able to decode the driver's intentions can use this information to improve the driving experience. In this study we investigate the neural signatures of anticipation of specific actions, namely braking and accelerating.

APPROACH

We investigated anticipatory slow cortical potentials in electroencephalogram recorded from 18 healthy participants in a driving simulator using a variant of the contingent negative variation (CNV) paradigm with Go and No-go conditions: count-down numbers followed by 'Start'/'Stop' cue. We report decoding performance before the action onset using a quadratic discriminant analysis classifier based on temporal features.

MAIN RESULTS

(i) Despite the visual and driving related cognitive distractions, we show the presence of anticipatory event related potentials locked to the stimuli onset similar to the widely reported CNV signal (with an average peak value of -8 μV at electrode Cz). (ii) We demonstrate the discrimination between cases requiring to perform an action upon imperative subsequent stimulus (Go condition, e.g. a 'Red' traffic light) versus events that do not require such action (No-go condition; e.g. a 'Yellow' light); with an average single trial classification performance of 0.83 ± 0.13 for braking and 0.79 ± 0.12 for accelerating (area under the curve). (iii) We show that the centro-medial anticipatory potentials are observed as early as 320 ± 200 ms before the action with a detection rate of 0.77 ± 0.12 in offline analysis.

SIGNIFICANCE

We show for the first time the feasibility of predicting the driver's intention through decoding anticipatory related potentials during simulated car driving with high recognition rates.

摘要

目的

汽车直接从神经信号推断驾驶员即将采取的行动的能力,能够丰富汽车与驾驶员之间的互动。配备有可解码驾驶员意图的车载脑机接口的智能车辆,可以利用这些信息来改善驾驶体验。在本研究中,我们调查了对特定动作(即刹车和加速)的预期的神经特征。

方法

我们使用一种带有“执行”和“不执行”条件的偶然负变化(CNV)范式变体,研究了18名健康参与者在驾驶模拟器中记录的脑电图中的预期慢皮层电位:倒计时数字后接“开始”/“停止”提示。我们报告了在动作开始前,使用基于时间特征的二次判别分析分类器的解码性能。

主要结果

(i)尽管存在视觉和与驾驶相关的认知干扰,但我们显示出与刺激开始相关的预期事件相关电位的存在,类似于广泛报道的CNV信号(在电极Cz处平均峰值为-8μV)。(ii)我们证明了在需要对后续强制刺激执行动作的情况(“执行”条件,例如“红色”交通信号灯)与不需要此类动作的事件(“不执行”条件;例如“黄色”信号灯)之间的区分;刹车的平均单次试验分类性能为0.83±0.13,加速为0.79±0.12(曲线下面积)。(iii)我们表明,在离线分析中,最早在动作前320±200毫秒观察到中央内侧预期电位,检测率为0.77±0.12。

意义

我们首次展示了在模拟汽车驾驶过程中,通过解码预期相关电位来预测驾驶员意图的可行性,且识别率很高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验