Boland Brandon B, Alarcón Cristina, Ali Almas, Rhodes Christopher J
a The Kovler Diabetes Center; Department of Medicine; Section on Endocrinology, Diabetes & Metabolism; The University of Chicago ; Chicago , IL USA.
Islets. 2015;7(2):e1073435. doi: 10.1080/19382014.2015.1073435. Epub 2015 Sep 24.
Monomethyladenines have effects on DNA repair, G-protein-coupled receptor antagonism and autophagy. In islet ß-cells, 3-methyladenine (3-MA) has been implicated in DNA-repair and autophagy, but its mechanism of action is unclear. Here, the effect of monomethylated adenines was examined in rat islets. 3-MA, N6-methyladenine (N6-MA) and 9-methyladenine (9-MA), but not 1- or 7-monomethylated adenines, specifically potentiated glucose-induced insulin secretion (3-4 fold; p ≤ 0.05) and proinsulin biosynthesis (∼2-fold; p ≤ 0.05). Using 3-MA as a 'model' monomethyladenine, it was found that 3-MA augmented [cAMP]i accumulation (2-3 fold; p ≤ 0.05) in islets within 5 minutes. The 3-, N6- and 9-MA also enhanced glucose-induced phosphorylation of the cAMP/protein kinase-A (PKA) substrate cAMP-response element binding protein (CREB). Treatment of islets with pertussis or cholera toxin indicated 3-MA mediated elevation of [cAMP]i was not mediated via G-protein-coupled receptors. Also, 3-MA did not compete with 9-cyclopentyladenine (9-CPA) for adenylate cyclase inhibition, but did for the pan-inhibitor of phosphodiesterase (PDE), 3-isobutyl-1-methylxanthine (IBMX). Competitive inhibition experiments with PDE-isoform specific inhibitors suggested 3-MA to have a preference for PDE4 in islet ß-cells, but this was likely reflective of PDE4 being the most abundant PDE isoform in ß-cells. In vitro enzyme assays indicated that 3-, N6- and 9-MA were capable of inhibiting most PDE isoforms found in ß-cells. Thus, in addition to known inhibition of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3'K)/m Target of Rapamycin (mTOR) signaling, 3-MA also acts as a pan-phosphodiesterase inhibitor in pancreatic ß-cells to elevate [cAMP]i and then potentiate glucose-induced insulin secretion and production in parallel.
单甲基腺嘌呤对DNA修复、G蛋白偶联受体拮抗作用和自噬有影响。在胰岛β细胞中,3-甲基腺嘌呤(3-MA)与DNA修复和自噬有关,但其作用机制尚不清楚。在此,研究了单甲基腺嘌呤在大鼠胰岛中的作用。3-MA、N6-甲基腺嘌呤(N6-MA)和9-甲基腺嘌呤(9-MA),而非1-或7-单甲基腺嘌呤,能特异性增强葡萄糖诱导的胰岛素分泌(3至4倍;p≤0.05)和胰岛素原生物合成(约2倍;p≤0.05)。以3-MA作为“模型”单甲基腺嘌呤,发现3-MA在5分钟内可使胰岛内的[cAMP]i积累增加(2至3倍;p≤0.05)。3-MA、N6-MA和9-MA还能增强葡萄糖诱导的cAMP/蛋白激酶A(PKA)底物cAMP反应元件结合蛋白(CREB)的磷酸化。用百日咳毒素或霍乱毒素处理胰岛表明,3-MA介导的[cAMP]i升高并非通过G蛋白偶联受体介导。此外,3-MA与9-环戊基腺嘌呤(9-CPA)竞争腺苷酸环化酶抑制作用时无竞争,但与磷酸二酯酶(PDE)的泛抑制剂3-异丁基-1-甲基黄嘌呤(IBMX)有竞争。用PDE同工型特异性抑制剂进行的竞争性抑制实验表明,3-MA在胰岛β细胞中对PDE4有偏好,但这可能反映了PDE4是β细胞中最丰富的PDE同工型。体外酶分析表明,3-MA、N6-MA和9-MA能够抑制β细胞中发现的大多数PDE同工型。因此,除了已知的对磷脂酰肌醇-4,5-二磷酸3-激酶(PI3'K)/雷帕霉素靶蛋白(mTOR)信号通路的抑制作用外,3-MA在胰腺β细胞中还作为一种泛磷酸二酯酶抑制剂,以升高[cAMP]i,进而同时增强葡萄糖诱导的胰岛素分泌和产生。