Suppr超能文献

基于物理约束稀疏字典学习的去噪和快速扩散成像。

Denoising and fast diffusion imaging with physically constrained sparse dictionary learning.

机构信息

Institut Mines-Telecom, Telecom ParisTech, CNRS LTCI, Paris, France; INRIA, Parietal Team, Saclay, France; NeuroSpin, CEA Saclay, Bat. 145, 91191 Gif-sur-Yvette Cedex, France.

出版信息

Med Image Anal. 2014 Jan;18(1):36-49. doi: 10.1016/j.media.2013.08.006. Epub 2013 Sep 10.

Abstract

Diffusion-weighted imaging (DWI) allows imaging the geometry of water diffusion in biological tissues. However, DW images are noisy at high b-values and acquisitions are slow when using a large number of measurements, such as in Diffusion Spectrum Imaging (DSI). This work aims to denoise DWI and reduce the number of required measurements, while maintaining data quality. To capture the structure of DWI data, we use sparse dictionary learning constrained by the physical properties of the signal: symmetry and positivity. The method learns a dictionary of diffusion profiles on all the DW images at the same time and then scales to full brain data. Its performance is investigated with simulations and two real DSI datasets. We obtain better signal estimates from noisy measurements than by applying mirror symmetry through the q-space origin, Gaussian denoising or state-of-the-art non-local means denoising. Using a high-resolution dictionary learnt on another subject, we show that we can reduce the number of images acquired while still generating high resolution DSI data. Using dictionary learning, one can denoise DW images effectively and perform faster acquisitions. Higher b-value acquisitions and DSI techniques are possible with approximately 40 measurements. This opens important perspectives for the connectomics community using DSI.

摘要

扩散加权成像(DWI)可用于成像生物组织中水分子扩散的几何形状。然而,在高 b 值下 DW 图像会存在噪声,并且在使用大量测量值(如扩散谱成像(DSI))时采集速度会较慢。本研究旨在对 DWI 进行去噪并减少所需的测量次数,同时保持数据质量。为了捕捉 DWI 数据的结构,我们使用稀疏字典学习方法,该方法受信号的物理特性(对称性和正定性)约束。该方法可以同时学习所有 DW 图像上的扩散分布字典,然后将其扩展到全脑数据。通过模拟和两个真实的 DSI 数据集对其性能进行了研究。与通过 q 空间原点镜像对称、高斯去噪或最先进的非局部均值去噪处理来应用噪声测量相比,我们可以从噪声测量中获得更好的信号估计。使用在另一个对象上学习的高分辨率字典,我们可以证明我们可以在保持高分辨率 DSI 数据的同时减少采集的图像数量。使用字典学习,可以有效地对 DW 图像进行去噪并实现更快的采集。使用大约 40 次测量就可以进行更高 b 值的采集和 DSI 技术。这为使用 DSI 的连接组学社区开辟了重要的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验