Wu Zuhe, Zhuo Zihang, Cai Dongyang, Wu Jian'an, Wang Jie, Tang Jintian
Technol Health Care. 2015;23 Suppl 2:S203-9. doi: 10.3233/THC-150955.
BACKGROUND: Induction heating devices using the induction coil and magnetic nanoparticles (MNPs) are the way that the magnetic hyperthermia is heading. OBJECTIVE: To facilitate the induction heating of in vivo magnetic nanoparticles in hyperthermia experiments on large animals. METHODS: An induction heating device using a planar coil was designed with a magnetic field frequency of 328 kHz. The coil's magnetic field distribution and the device's induction heating performance on different concentrations of magnetic nanoparticles were measured. RESULTS: The alternating magnetic field produced in the axis position 165 mm away from the coil center is 40 Gs in amplitude; magnetic nanoparticles with a concentration higher than 80 mg. mL-1 can be heated up rapidly. CONCLUSION: Our results demonstrate that the device can be applied not only to in vitro and in small animal experiments of magnetic hyperthermia using MNPs, but also in large animal experiments.
背景:利用感应线圈和磁性纳米颗粒(MNPs)的感应加热装置是磁热疗的发展方向。 目的:在大型动物热疗实验中促进体内磁性纳米颗粒的感应加热。 方法:设计了一种使用平面线圈的感应加热装置,磁场频率为328kHz。测量了线圈的磁场分布以及该装置在不同浓度磁性纳米颗粒上的感应加热性能。 结果:在距离线圈中心165mm的轴位置产生的交变磁场振幅为40Gs;浓度高于80mg·mL-1的磁性纳米颗粒能够快速升温。 结论:我们的结果表明,该装置不仅可应用于使用MNPs的磁热疗体外和小动物实验,还可应用于大型动物实验。
Biomed Tech (Berl). 2015-10
Int J Hyperthermia. 2020
Mater Sci Eng C Mater Biol Appl. 2016-11-1
Sensors (Basel). 2022-7-8