Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan.
Phys Med. 2013 Nov;29(6):624-30. doi: 10.1016/j.ejmp.2012.08.005. Epub 2012 Sep 15.
Our purpose in this study was to investigate the usefulness of a method for controlling the temperature rise in magnetic hyperthermia (MH) using an external static magnetic field (SMF), and to derive an empirical equation for describing the energy dissipation of magnetic nanoparticles (MNPs) in the presence of both the alternating magnetic field (AMF) and SMF through phantom experiments. We made a device that allows for MH in the presence of an SMF with a field-free point (FFP) using a Maxwell coil pair. We measured the temperature rise of MNPs under various conditions of AMF and SMF and various distances from the FFP (d), and calculated the specific absorption rate (SAR) from the initial slope of the temperature curve. The SAR values decreased with increasing strength of SMF (Hs) and d. The extent of their decrease with d increased with an increase of the gradient of SMF (Gs). The relationships between SAR and Hs and between SAR and d could be well approximated by Rosensweig's equation in which the amplitude of AMF (Hac) is replaced by √[Hac(2)]/√[Hac(2)+Hs(2)], except for the case when Gs was small. In conclusion, the use of an external SMF with an FFP will be effective for controlling the temperature rise in MH in order to reduce the risk of heating surrounding healthy tissues, and our empirical equation will be useful for estimating SAR in the presence of both the AMF and SMF and for designing an effective local heating system for MH.
我们在这项研究中的目的是调查使用外部静磁场 (SMF) 控制磁热疗 (MH) 中温升的方法的有效性,并通过幻影实验得出一个经验公式,用于描述在存在交变磁场 (AMF) 和 SMF 时磁性纳米粒子 (MNP) 的能量耗散。我们制造了一种使用麦克斯韦线圈对在存在无场点 (FFP) 的情况下允许 MH 的装置。我们测量了在各种 AMF 和 SMF 条件下以及与 FFP 不同距离 (d) 下 MNP 的温升,并从温度曲线的初始斜率计算出比吸收率 (SAR)。SAR 值随着 SMF 强度 (Hs) 和 d 的增加而降低。随着 SMF 梯度 (Gs) 的增加,SAR 值随 d 降低的程度增加。SAR 与 Hs 之间以及 SAR 与 d 之间的关系可以通过罗森斯威格方程很好地近似,除了 Gs 较小时,该方程用 AMF 的幅度 (Hac) 代替 √[Hac(2)]/√[Hac(2)+Hs(2)]。总之,使用具有 FFP 的外部 SMF 将有效控制 MH 中的温升,以降低加热周围健康组织的风险,并且我们的经验公式将有助于在存在 AMF 和 SMF 的情况下估计 SAR,并设计有效的 MH 局部加热系统。
Bioelectromagnetics. 2013-2
Int J Hyperthermia. 2025-12
Nanoscale Adv. 2019-11-25
Materials (Basel). 2021-2-3