Ropars Jeanne, Rodríguez de la Vega Ricardo C, López-Villavicencio Manuela, Gouzy Jérôme, Sallet Erika, Dumas Émilie, Lacoste Sandrine, Debuchy Robert, Dupont Joëlle, Branca Antoine, Giraud Tatiana
Ecologie, Systématique et Evolution, UMR8079, Univ. Paris-Sud, 91405 Orsay, France; Ecologie, Systématique et Evolution, UMR8079, CNRS, 91405 Orsay, France.
Institut de Systématique, Evolution, Biodiversité, UMR 7205 CNRS-MNHN-UPMC-EPHE, Muséum national d'Histoire naturelle, Sorbonne Université, CP39, 57 Rue Cuvier, 75231 Paris Cedex 05, France.
Curr Biol. 2015 Oct 5;25(19):2562-9. doi: 10.1016/j.cub.2015.08.025. Epub 2015 Sep 24.
Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1-5]. Few studies have focused on the domestication of fungi, with notable exceptions [6-11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making-P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13-15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes.
驯化是研究适应性的一个绝佳模型,因为它涉及对少数已确定性状的近期且强烈的选择[1-5]。尽管真菌对生物产业[12]以及对真核生物适应性的总体理解[5]很重要,但除了一些显著的例外[6-11],很少有研究关注真菌的驯化。青霉菌是常见的霉菌,其中两个亲缘关系较远的物种已被独立选用于奶酪制作——用于制作如罗克福尔蓝纹奶酪的罗克福尔青霉,以及用于制作如卡芒贝尔软奶酪的卡芒贝尔青霉。所选性状包括形态、香气特征、脂肪分解和蛋白水解活性,以及在含有细菌和真菌竞争者的基质中低温生长的能力[13-15]。通过比较十个青霉物种的基因组,我们发现适应奶酪与携带关键代谢基因的大基因组区域的多次近期水平转移有关。我们鉴定出七个水平转移区域(HTRs),每个区域跨度超过10 kb,两侧有特定的转座元件,并且在亲缘关系较远的青霉物种之间显示出近100%的同一性。两个HTRs携带的基因具有参与奶酪营养利用或竞争的功能,并且在与奶酪相关的多种青霉真菌菌株和物种中几乎相同,表明近期发生了选择性清除;它们在实验中与在奶酪上更快的生长和更强的竞争力相关,并且包含在奶酪成熟早期高度表达的基因。这些发现具有工业和食品安全意义,并增进了我们对适应快速环境变化过程的理解。