Suppr超能文献

社会经济剥夺与急诊就诊情况:对英格兰全科医疗的横断面分析

Socioeconomic deprivation and accident and emergency attendances: cross-sectional analysis of general practices in England.

作者信息

Scantlebury Rachel, Rowlands Gillian, Durbaba Stevo, Schofield Peter, Sidhu Kalwant, Ashworth Mark

机构信息

Department of Primary Care and Public Health Sciences, King's College London, London.

Institute of Public Health, Aarhus University, Aarhus, Denmark, and Institute for Health and Society, Newcastle University, Newcastle, UK.

出版信息

Br J Gen Pract. 2015 Oct;65(639):e649-54. doi: 10.3399/bjgp15X686893.

Abstract

BACKGROUND

Demand for England's accident and emergency (A&E) services is increasing and is particularly concentrated in areas of high deprivation. The extent to which primary care services, relative to population characteristics, can impact on A&E is not fully understood.

AIM

To conduct a detailed analysis to identify population and primary care characteristics associated with A&E attendance rates, particularly those that may be amenable to change by primary care services.

DESIGN AND SETTING

This study used a cross-sectional population-based design. The setting was general practices in England, in the year 2011-2012.

METHOD

Multivariate linear regression analysis was used to create a model to explain the variability in practice A&E attendance rates. Predictor variables included population demographics, practice characteristics, and measures of patient experiences of primary care.

RESULTS

The strongest predictor of general practice A&E attendance rates was social deprivation: the Index of Multiple Deprivation (IMD-2010) (β = 0.3. B = 1.4 [95% CI =1.3 to 1.6]), followed by population morbidity (GPPS responders reporting a long-standing health condition) (β = 0.2, B = 231.5 [95% CI = 202.1 to 260.8]), and knowledge of how to contact an out-of-hours GP (GPPS question 36) (β = -0.2, B = -128.7 [95% CI =149.3 to -108.2]). Other significant predictors included the practice list size (β = -0.1, B = -0.002 [95% CI = -0.003 to -0.002]) and the proportion of patients aged 0-4 years (β = 0.1, B = 547.3 [95% CI = 418.6 to 676.0]). The final model explained 34.4% of the variation in A&E attendance rates, mostly due to factors that could not be modified by primary care services.

CONCLUSION

Demographic characteristics were the strongest predictors of A&E attendance rates. Primary care variables that may be amenable to change only made a small contribution to higher A&E attendance rates.

摘要

背景

英格兰对事故与急诊(A&E)服务的需求不断增加,且尤其集中在高度贫困地区。相对于人口特征而言,初级保健服务对急诊的影响程度尚未完全明确。

目的

进行详细分析,以确定与急诊就诊率相关的人口和初级保健特征,特别是那些可能通过初级保健服务加以改变的特征。

设计与背景

本研究采用基于人群的横断面设计。研究背景为2011 - 2012年英格兰的全科医疗。

方法

采用多元线性回归分析建立模型,以解释各医疗机构急诊就诊率的差异。预测变量包括人口统计学特征、医疗机构特征以及患者对初级保健体验的衡量指标。

结果

全科医疗急诊就诊率的最强预测因素是社会剥夺:多重剥夺指数(IMD - 2010)(β = 0.3,B = 1.4 [95%置信区间 = 1.3至1.6]),其次是人口发病率(报告患有长期健康问题的全科医疗患者调查(GPPS)应答者)(β = 0.2,B = 231.5 [95%置信区间 = 202.1至260.8]),以及如何联系非工作时间全科医生的知晓情况(GPPS问题36)(β = -0.2,B = -128.7 [95%置信区间 = -149.3至 -108.2])。其他显著预测因素包括医疗机构登记人数(β = -

相似文献

引用本文的文献

本文引用的文献

10
Socio-economic determinants of casualty and NHS Direct use.伤亡情况及国民保健署直接服务使用的社会经济决定因素
J Public Health (Oxf). 2008 Mar;30(1):75-81. doi: 10.1093/pubmed/fdn001. Epub 2008 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验