Errico Claudia, Osmanski Bruno-Félix, Pezet Sophie, Couture Olivier, Lenkei Zsolt, Tanter Mickael
INSERM, Institut Langevin, 1 rue Jussieu, 75005, Paris, France; ESPCI ParisTech, PSL Research University, Institut Langevin, 1 rue Jussieu, 75005, Paris, France; CNRS, Institut Langevin, 1 rue Jussieu, 75005, Paris, France.
CNRS, UMR 8249, 10 rue Vauquelin, 75005 Paris, France; Brain Plasticity Unit, ESPCI-ParisTech, PSL Research University 10 rue Vauquelin, 75005 Paris, France.
Neuroimage. 2016 Jan 1;124(Pt A):752-761. doi: 10.1016/j.neuroimage.2015.09.037. Epub 2015 Sep 28.
Functional ultrasound (fUS) is a novel neuroimaging technique, based on high-sensitivity ultrafast Doppler imaging of cerebral blood volume, capable of measuring brain activation and connectivity in rodents with high spatiotemporal resolution (100μm, 1ms). However, the skull attenuates acoustic waves, so fUS in rats currently requires craniotomy or a thinned-skull window. Here we propose a non-invasive approach by enhancing the fUS signal with a contrast agent, inert gas microbubbles. Plane-wave illumination of the brain at high frame rate (500Hz compounded sequence with three tilted plane waves, PRF=1500Hz with a 128 element 15MHz linear transducer), yields highly-resolved neurovascular maps. We compared fUS imaging performance through the intact skull bone (transcranial fUS) versus a thinned-skull window in the same animal. First, we show that the vascular network of the adult rat brain can be imaged transcranially only after a bolus intravenous injection of microbubbles, which leads to a 9dB gain in the contrast-to-tissue ratio. Next, we demonstrate that functional increase in the blood volume of the primary sensory cortex after targeted electrical-evoked stimulations of the sciatic nerve is observable transcranially in presence of contrast agents, with high reproducibility (Pearson's coefficient ρ=0.7±0.1, p=0.85). Our work demonstrates that the combination of ultrafast Doppler imaging and injection of contrast agent allows non-invasive functional brain imaging through the intact skull bone in rats. These results should ease non-invasive longitudinal studies in rodents and open a promising perspective for the adoption of highly resolved fUS approaches for the adult human brain.
功能超声(fUS)是一种新型神经成像技术,基于对脑血容量的高灵敏度超快多普勒成像,能够以高时空分辨率(100μm,1ms)测量啮齿动物的脑激活和连通性。然而,颅骨会衰减声波,因此目前大鼠的fUS需要开颅手术或薄颅骨窗口。在此,我们提出一种非侵入性方法,通过使用造影剂惰性气体微泡增强fUS信号。以高帧率(500Hz复合序列,三个倾斜平面波,PRF = 1500Hz,使用128阵元15MHz线性换能器)对大脑进行平面波照射,可产生高分辨率的神经血管图谱。我们在同一只动物中比较了通过完整颅骨(经颅fUS)与薄颅骨窗口的fUS成像性能。首先,我们表明,仅在静脉推注微泡后,成年大鼠大脑的血管网络才能经颅成像,这导致对比度与组织比提高9dB。接下来,我们证明,在存在造影剂的情况下,经颅可观察到在对坐骨神经进行靶向电诱发刺激后初级感觉皮层血容量的功能增加,且具有高重现性(皮尔逊系数ρ = 0.7±0.1,p = 0.85)。我们的工作表明,超快多普勒成像与造影剂注射相结合可实现大鼠通过完整颅骨进行非侵入性脑功能成像。这些结果应会简化啮齿动物的非侵入性纵向研究,并为将高分辨率fUS方法应用于成人大脑开辟一个有前景的前景。