Lamy Frank, Arz Helge W, Kilian Rolf, Lange Carina B, Lembke-Jene Lester, Wengler Marc, Kaiser Jérôme, Baeza-Urrea Oscar, Hall Ian R, Harada Naomi, Tiedemann Ralf
Marine Geology Section, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany;
Department of Marine Geology, Leibniz Institute for Baltic Sea Research, 18119 Rostock-Warnemünde, Germany;
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13496-501. doi: 10.1073/pnas.1509203112. Epub 2015 Sep 28.
The Drake Passage (DP) is the major geographic constriction for the Antarctic Circumpolar Current (ACC) and exerts a strong control on the exchange of physical, chemical, and biological properties between the Atlantic, Pacific, and Indian Ocean basins. Resolving changes in the flow of circumpolar water masses through this gateway is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global ocean and climate variability. Here, we reconstruct changes in DP throughflow dynamics over the past 65,000 y based on grain size and geochemical properties of sediment records from the southernmost continental margin of South America. Combined with published sediment records from the Scotia Sea, we argue for a considerable total reduction of DP transport and reveal an up to ∼ 40% decrease in flow speed along the northernmost ACC pathway entering the DP during glacial times. Superimposed on this long-term decrease are high-amplitude, millennial-scale variations, which parallel Southern Ocean and Antarctic temperature patterns. The glacial intervals of strong weakening of the ACC entering the DP imply an enhanced export of northern ACC surface and intermediate waters into the South Pacific Gyre and reduced Pacific-Atlantic exchange through the DP ("cold water route"). We conclude that changes in DP throughflow play a critical role for the global meridional overturning circulation and interbasin exchange in the Southern Ocean, most likely regulated by variations in the westerly wind field and changes in Antarctic sea ice extent.
德雷克海峡(DP)是南极绕极流(ACC)的主要地理约束,对大西洋、太平洋和印度洋盆地之间物理、化学和生物特性的交换施加着强有力的控制。因此,解析通过这一通道的绕极水体流动变化,对于深化我们对南大洋在全球海洋和气候变率中所起作用的理解至关重要。在此,我们基于南美洲最南端大陆边缘沉积物记录的粒度和地球化学特性,重建了过去65000年里德雷克海峡贯穿流动力学的变化。结合斯科舍海已发表的沉积物记录,我们认为德雷克海峡的总输运量有显著减少,并揭示出在冰期时,沿进入德雷克海峡的最北端南极绕极流路径,流速下降高达约40%。叠加在这种长期下降趋势之上的是高振幅、千年尺度的变化,这些变化与南大洋和南极的温度模式平行。进入德雷克海峡的南极绕极流在冰期的强烈减弱意味着,更多的南极绕极流表层和中层水向北输出进入南太平洋环流,以及通过德雷克海峡(“冷水通道”)的太平洋 - 大西洋交换减少。我们得出结论,德雷克海峡贯穿流的变化对南大洋的全球经向翻转环流和跨盆地交换起着关键作用,最有可能是由西风带的变化和南极海冰范围的变化所调节。