Suppr超能文献

儿茶酚-O-甲基转移酶(COMT)、多巴胺D1受体(DRD1)和多巴胺D2受体(DRD2)基因中常见的多态性影响人类运动序列学习的不同方面。

Commonly-occurring polymorphisms in the COMT, DRD1 and DRD2 genes influence different aspects of motor sequence learning in humans.

作者信息

Baetu Irina, Burns Nicholas R, Urry Kristi, Barbante Girolamo Giovanni, Pitcher Julia B

机构信息

University of Adelaide, Australia.

University of Adelaide, Australia.

出版信息

Neurobiol Learn Mem. 2015 Nov;125:176-88. doi: 10.1016/j.nlm.2015.09.009. Epub 2015 Sep 28.

Abstract

Performing sequences of movements is a ubiquitous skill that involves dopamine transmission. However, it is unclear which components of the dopamine system contribute to which aspects of motor sequence learning. Here we used a genetic approach to investigate the relationship between different components of the dopamine system and specific aspects of sequence learning in humans. In particular, we investigated variations in genes that code for the catechol-O-methyltransferase (COMT) enzyme, the dopamine transporter (DAT) and dopamine D1 and D2 receptors (DRD1 and DRD2). COMT and the DAT regulate dopamine availability in the prefrontal cortex and the striatum, respectively, two key regions recruited during learning, whereas dopamine D1 and D2 receptors are thought to be involved in long-term potentiation and depression, respectively. We show that polymorphisms in the COMT, DRD1 and DRD2 genes differentially affect behavioral performance on a sequence learning task in 161 Caucasian participants. The DRD1 polymorphism predicted the ability to learn new sequences, the DRD2 polymorphism predicted the ability to perform a previously learnt sequence after performing interfering random movements, whereas the COMT polymorphism predicted the ability to switch flexibly between two sequences. We used computer simulations to explore potential mechanisms underlying these effects, which revealed that the DRD1 and DRD2 effects are possibly related to neuroplasticity. Our prediction-error algorithm estimated faster rates of connection strengthening in genotype groups with presumably higher D1 receptor densities, and faster rates of connection weakening in genotype groups with presumably higher D2 receptor densities. Consistent with current dopamine theories, these simulations suggest that D1-mediated neuroplasticity contributes to learning to select appropriate actions, whereas D2-mediated neuroplasticity is involved in learning to inhibit incorrect action plans. However, the learning algorithm did not account for the COMT effect, suggesting that prefrontal dopamine availability might affect sequence switching via other, non-learning, mechanisms. These findings provide insight into the function of the dopamine system, which is relevant to the development of treatments for disorders such as Parkinson's disease. Our results suggest that treatments targeting dopamine D1 receptors may improve learning of novel sequences, whereas those targeting dopamine D2 receptors may improve the ability to initiate previously learned sequences of movements.

摘要

执行一系列动作是一项普遍存在的技能,涉及多巴胺传递。然而,尚不清楚多巴胺系统的哪些成分对运动序列学习的哪些方面有贡献。在这里,我们采用遗传学方法来研究多巴胺系统的不同成分与人类序列学习特定方面之间的关系。具体而言,我们研究了编码儿茶酚-O-甲基转移酶(COMT)、多巴胺转运体(DAT)以及多巴胺D1和D2受体(DRD1和DRD2)的基因变异。COMT和DAT分别调节前额叶皮质和纹状体中的多巴胺可用性,这两个区域是学习过程中被激活的关键区域,而多巴胺D1和D2受体分别被认为参与长时程增强和长时程抑制。我们发现,COMT、DRD1和DRD2基因的多态性对161名白种人参与者在序列学习任务中的行为表现有不同影响。DRD1多态性预测学习新序列的能力,DRD2多态性预测在执行干扰性随机动作后执行先前学习序列的能力,而COMT多态性预测在两个序列之间灵活切换的能力。我们使用计算机模拟来探索这些效应背后的潜在机制,结果表明DRD1和DRD2的效应可能与神经可塑性有关。我们的预测误差算法估计,在假定D1受体密度较高的基因型组中,连接增强的速率更快,而在假定D2受体密度较高的基因型组中,连接减弱的速率更快。与当前的多巴胺理论一致,这些模拟表明,D1介导的神经可塑性有助于学习选择合适的动作,而D2介导的神经可塑性参与学习抑制不正确的行动计划。然而这种学习算法无法解释COMT的效应,这表明前额叶多巴胺可用性可能通过其他非学习机制影响序列切换。这些发现为多巴胺系统的功能提供了深入了解,这与帕金森病等疾病治疗方法的开发相关。我们的结果表明,针对多巴胺D1受体的治疗可能会改善新序列的学习,而针对多巴胺D2受体的治疗可能会提高启动先前学习的动作序列的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验