Suppr超能文献

微生物视蛋白基因光学工具:在行为中用于分析突触传递和神经元网络活动的应用。

Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.

机构信息

Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.

Institute of Biophysical Chemistry, Goethe University, Frankfurt, Germany.

出版信息

Methods Mol Biol. 2022;2468:89-115. doi: 10.1007/978-1-0716-2181-3_6.

Abstract

Over the past 15 years, optogenetic methods have revolutionized neuroscientific and cell biological research, also in the nematode Caenorhabditis elegans. In this chapter, we give an update about current optogenetic tools and methods to address neuronal activity and inhibition, as well as second messenger signaling, based on microbial rhodopsins. We address channelrhodopsins and variants thereof, which conduct cations or anions, for depolarization and hyperpolarization of the membrane potential. Also, we cover ion pumping rhodopsins, like halorhodopsin, Mac, and Arch. A recent addition to rhodopsin-based optogenetics is voltage imaging tools that allow fluorescent readout of membrane voltage (directly, via fluorescence of the rhodopsin chromophore retinal, or indirectly, via electrochromic FRET). Last, we report on a new addition to the optogenetic toolbox, which is rhodopsin guanylyl cyclases, as well as mutated variants with specificity for cyclic AMP. These can be used to regulate intracellular levels of cGMP and cAMP, which are important second messengers in sensory and other neurons. We further show how they can be combined with cyclic nucleotide-gated channels in two-component optogenetics, for depolarization or hyperpolarization of membrane potential. For all tools, we present protocols for straightforward experimentation to address neuronal activation and inhibition, particularly at the neuromuscular junction, and for combined optogenetic actuation and Ca imaging. We also provide protocols for usage of rhodopsin guanylyl and adenylyl cyclases. Finally, we list a number of points to consider when designing and conducting rhodopsin-based optogenetic experiments.

摘要

在过去的 15 年中,光遗传学方法彻底改变了神经科学和细胞生物学研究,在秀丽隐杆线虫中也是如此。在本章中,我们将介绍当前基于微生物视蛋白的光遗传学工具和方法,用于研究神经元的活动和抑制以及第二信使信号。我们将讨论阳离子或阴离子通道的视蛋白通道和变体,它们可以使膜电位去极化和超极化。此外,我们还将介绍包括 halorhodopsin、Mac 和 Arch 在内的离子泵浦视蛋白。基于视蛋白的光遗传学的最新进展是电压成像工具,它可以通过视蛋白发色团视黄醛的荧光(直接)或通过电致变色 FRET(间接)来荧光读取膜电压。最后,我们报告了光遗传学工具包中的一个新成员,即视蛋白鸟苷酸环化酶,以及对 cAMP 具有特异性的突变变体。这些可以用于调节细胞内 cGMP 和 cAMP 的水平,它们是感觉神经元和其他神经元中的重要第二信使。我们进一步展示了如何将它们与双组分光遗传学中的环核苷酸门控通道结合使用,以实现膜电位的去极化或超极化。对于所有工具,我们都提供了简单易行的实验方案,用于研究神经元的激活和抑制,特别是在神经肌肉接头处,以及用于结合光遗传学驱动和 Ca 成像。我们还提供了使用视蛋白鸟苷酸和腺苷酸环化酶的方案。最后,我们列出了在设计和进行基于视蛋白的光遗传学实验时需要考虑的一些要点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验