Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, Okazaki, Japan.
Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Japan.
Adv Exp Med Biol. 2021;1293:73-88. doi: 10.1007/978-981-15-8763-4_5.
In these 15 years, researches to control cellular responses by light have flourished dramatically to establish "optogenetics" as a research field. In particular, light-dependent excitation/inhibition of neural cells using channelrhodopsins or other microbial rhodopsins is the most powerful and the most widely used optogenetic technique. New channelrhodopsin-based optogenetic tools having favorable characteristics have been identified from a wide variety of organisms or created through mutagenesis. Despite the great efforts, some neuronal activities are still hard to be manipulated by the channelrhodopsin-based tools, indicating that complementary approaches are needed to make optogenetics more comprehensive. One of the feasible and complementary approaches is optical control of ion channels using photoreceptive proteins other than channelrhodopsins. In particular, animal opsins can modulate various ion channels via light-dependent G protein activation. In this chapter, we summarize how such alternative optogenetic tools work and they will be improved.
在这 15 年中,通过光控制细胞反应的研究蓬勃发展,将“光遗传学”确立为一个研究领域。特别是,使用通道视紫红质或其他微生物视紫红质来依赖光的兴奋/抑制神经细胞是最强大和最广泛使用的光遗传学技术。已经从各种生物体中鉴定出具有有利特性的新型基于通道视紫红质的光遗传学工具,或者通过突变产生。尽管做出了巨大的努力,但一些神经元活动仍然难以通过基于通道视紫红质的工具进行操作,这表明需要互补的方法使光遗传学更全面。一种可行的互补方法是使用除通道视紫红质以外的光受体蛋白来光学控制离子通道。特别是,动物视蛋白可以通过光依赖性 G 蛋白激活来调节各种离子通道。在本章中,我们总结了这些替代光遗传学工具的工作原理以及它们将如何得到改进。