Xie Jiajun, Yang Xianyan, Shao Huifeng, Ye Juan, He Yong, Fu Jianzhong, Gao Changyou, Gou Zhongru
Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China.
Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
J Mech Behav Biomed Mater. 2016 Feb;54:60-71. doi: 10.1016/j.jmbbm.2015.09.012. Epub 2015 Sep 21.
The large-area bone defects in head (including calvarial, orbital, and maxillofacial bone) and segmental bone are attracting increased attention in a wide range of clinical departments. A key requirement for the clinical success of the bioactive ceramics is the match of the mechanical behavior of the implants with the specific bone tissue to be filled. This raises the question as to what design strategy might be the best indicators for the balance between mechanical properties and biological performances. Here we go beyond the traditional approaches that use phase conversion or biphasic hybrid; instead, we achieved a simultaneous enhancement of several mechanical parameters and optimalization of biodegradability by using a dilute doping of Mg in a single-phase wollastonite bioceramic. We show that the wollastonite ceramic can be rationally tuned in phase (α or β), mechanical strength (in compression and bending mode), elastic modulus (18-23GPa), and fracture toughness (>3.2MPam(1/2)) through the usage of Mg dopant introduced at precisely defined dilute concentrations (Mg/Ca molar ratio: 1.2-2.1%). Meanwhile, the dilute Mg-doped wollastonite ceramics are shown to exhibit good bioactivity in vitro in SBF but biodegradation in Tris is inversely proportional to Mg content. Consequently, such new highly bioactive ceramics with appreciable strength and toughness are promising for making specific porous scaffolds for enhancing large segmental bone defect and thin-wall bone defect repair.
头部大面积骨缺损(包括颅骨、眼眶骨和颌面骨)以及节段性骨缺损在众多临床科室中受到越来越多的关注。生物活性陶瓷临床成功的一个关键要求是植入物的力学行为与待填充的特定骨组织相匹配。这就引出了一个问题,即何种设计策略可能是力学性能与生物学性能之间平衡的最佳指标。在此,我们超越了使用相转变或双相混合的传统方法;相反,我们通过在单相硅灰石生物陶瓷中进行稀镁掺杂,实现了多个力学参数的同时增强以及生物降解性的优化。我们表明,通过使用精确控制的稀浓度(镁/钙摩尔比:1.2 - 2.1%)引入的镁掺杂剂,可以合理调节硅灰石陶瓷的相(α或β)、机械强度(压缩和弯曲模式下)、弹性模量(18 - 23GPa)和断裂韧性(>3.2MPam(1/2))。同时,稀镁掺杂的硅灰石陶瓷在体外模拟体液(SBF)中表现出良好的生物活性,但在Tris溶液中的生物降解与镁含量成反比。因此,这种具有可观强度和韧性的新型高生物活性陶瓷有望用于制造特定的多孔支架,以促进大节段性骨缺损和薄壁骨缺损的修复。