Suppr超能文献

直接墨水书写硅灰石支架中孔壁的修饰有利于调节生物降解性和机械稳定性,并增强成骨能力。

Modification of pore-wall in direct ink writing wollastonite scaffolds favorable for tuning biodegradation and mechanical stability and enhancing osteogenic capability.

机构信息

Department of Orthopaedic Surgery, The Third Hospital Affiliated to Wenzhou Medical University, Rui'an, China.

Key Laboratory of Molecular Biology in Medical Sciences, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China.

出版信息

FASEB J. 2020 Apr;34(4):5673-5687. doi: 10.1096/fj.201903044R. Epub 2020 Mar 1.

Abstract

Surface chemistry and mechanical stability determine the osteogenic capability of bone implants. The development of high-strength bioactive scaffolds for in-situ repair of large bone defects is challenging because of the lack of satisfying biomaterials. In this study, highly bioactive Ca-silicate (CSi) bioceramic scaffolds were fabricated by additive manufacturing and then modified for pore-wall reinforcement. Pure CSi scaffolds were fabricated using a direct ink writing technique, and the pore-wall was modified with 0%, 6%, or 10% Mg-doped CSi slurry (CSi, CSi-Mg6, or CSi-Mg10) through electrostatic interaction. Modified CSi@CSi-Mg6 and CSi@CSi-Mg10 scaffolds with over 60% porosity demonstrated an appreciable compressive strength beyond 20 MPa, which was ~2-fold higher than that of pure CSi scaffolds. CSi-Mg6 and CSi-Mg10 coating layers were specifically favorable for retarding bio-dissolution and mechanical decay of scaffolds in vitro. In-vivo investigation of critical-size femoral bone defects repair revealed that CSi@CSi-Mg6 and CSi@CSi-Mg10 scaffolds displayed limited biodegradation, accelerated new bone ingrowth (4-12 weeks), and elicited a suitable mechanical response. In contrast, CSi scaffolds exhibited fast biodegradation and retarded new bone regeneration after 8 weeks. Thus, tailoring of the chemical composition of pore-wall struts of CSi scaffolds is beneficial for enhancing the biomechanical properties and bone repair efficacy.

摘要

表面化学性质和机械稳定性决定了骨植入物的成骨能力。由于缺乏令人满意的生物材料,开发用于原位修复大骨缺损的高强度生物活性支架仍然具有挑战性。在这项研究中,通过增材制造制备了具有高生物活性的硅酸钙(CSi)生物陶瓷支架,然后对其进行了改性以增强孔壁。使用直接墨水书写技术制备纯 CSi 支架,通过静电相互作用将孔壁用 0%、6%或 10%掺镁 CSi 浆料(CSi、CSi-Mg6 或 CSi-Mg10)改性。具有超过 60%孔隙率的改性 CSi@CSi-Mg6 和 CSi@CSi-Mg10 支架表现出超过 20 MPa 的可观抗压强度,比纯 CSi 支架高约 2 倍。CSi-Mg6 和 CSi-Mg10 涂层特别有利于延缓支架在体外的生物溶解和机械降解。对临界尺寸股骨骨缺损修复的体内研究表明,CSi@CSi-Mg6 和 CSi@CSi-Mg10 支架表现出有限的生物降解,加速了新骨向内生长(4-12 周),并引起了适当的机械响应。相比之下,CSi 支架在 8 周后表现出快速的生物降解和新骨再生的延迟。因此,调整 CSi 支架孔壁的化学成分有利于增强生物力学性能和骨修复效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验