Suppr超能文献

随机增长模型中的指法

Fingering in Stochastic Growth Models.

作者信息

Aristotelous Andreas C, Durrett Richard

机构信息

Department of Mathematics, Duke U., Box 90320, Durham, NC 27708-0320.

出版信息

Exp Math. 2014;23(4):465-474. doi: 10.1080/10586458.2014.947053. Epub 2014 Nov 14.

Abstract

Motivated by the widespread use of hybrid-discrete cellular automata in modeling cancer, two simple growth models are studied on the two dimensional lattice that incorporate a nutrient, assumed to be oxygen. In the first model the oxygen concentration (, ) is computed based on the geometry of the growing blob, while in the second one (, ) satisfies a reaction-diffusion equation. A threshold value exists such that cells give birth at rate ((, ) - ) and die at rate ( - (, ). In the first model, a phase transition was found between growth as a solid blob and "fingering" at a threshold = 0.5, while in the second case fingering always occurs, i.e., = 0.

摘要

受混合离散细胞自动机在癌症建模中广泛应用的启发,我们在二维晶格上研究了两个简单的生长模型,该模型纳入了一种假定为氧气的营养物质。在第一个模型中,氧气浓度(,)是根据生长的细胞团的几何形状计算得出的,而在第二个模型中,(,)满足一个反应扩散方程。存在一个阈值,使得细胞以速率((,) - )产生,并以速率( - (,))死亡。在第一个模型中,发现在阈值 = 0.5 时,生长从作为固体团块转变为“指状生长”,而在第二种情况下,总是会出现指状生长,即 = 0。

相似文献

1
Fingering in Stochastic Growth Models.随机增长模型中的指法
Exp Math. 2014;23(4):465-474. doi: 10.1080/10586458.2014.947053. Epub 2014 Nov 14.
2
Fingering instability and mixing of a blob in porous media.多孔介质中液滴的指进不稳定性与混合
Phys Rev E. 2016 Oct;94(4-1):043106. doi: 10.1103/PhysRevE.94.043106. Epub 2016 Oct 11.
3
Adsorption, desorption, and diffusion of k-mers on a one-dimensional lattice.k聚体在一维晶格上的吸附、解吸和扩散。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021115. doi: 10.1103/PhysRevE.80.021115. Epub 2009 Aug 20.
9
Freezing Transition in the Barrier Crossing Rate of a Diffusing Particle.扩散粒子势垒穿越率中的冻结转变
Phys Rev Lett. 2020 Nov 13;125(20):200601. doi: 10.1103/PhysRevLett.125.200601.

本文引用的文献

1
Multiscale cancer modeling.多尺度癌症建模。
Annu Rev Biomed Eng. 2011 Aug 15;13:127-55. doi: 10.1146/annurev-bioeng-071910-124729.
2
Hybrid models of tumor growth.肿瘤生长的混合模型。
Wiley Interdiscip Rev Syst Biol Med. 2011 Jan-Feb;3(1):115-25. doi: 10.1002/wsbm.102.
4
Front instabilities and invasiveness of simulated avascular tumors.模拟无血管肿瘤的前沿不稳定性和侵袭性。
Bull Math Biol. 2009 Jul;71(5):1189-227. doi: 10.1007/s11538-009-9399-5. Epub 2009 Feb 21.
7
An evolutionary hybrid cellular automaton model of solid tumour growth.一种实体肿瘤生长的进化混合细胞自动机模型。
J Theor Biol. 2007 Jun 21;246(4):583-603. doi: 10.1016/j.jtbi.2007.01.027. Epub 2007 Feb 12.
9
Reaction-diffusion model for the growth of avascular tumor.无血管肿瘤生长的反应扩散模型
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Feb;65(2 Pt 1):021907. doi: 10.1103/PhysRevE.65.021907. Epub 2002 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验