Rabinowitch Ithai, Schafer William R
Basic Sciences Division; Fred Hutchinson Cancer Research Center ; Seattle, WA USA ;
Cell Biology Division; MRC Laboratory of Molecular Biology ; Cambridge, UK.
Worm. 2015 Jan 28;4(2):e992668. doi: 10.4161/21624054.2014.992668. eCollection 2015 Apr-Jun.
Most of what we currently know about how neural circuits work we owe to methods based on the electrical or optical recording of neural activity. This is changing dramatically. First, the advent of optogenetic techinques has enabled precise manipulation of the activity of specific neurons. Second, the development of super-resolution methods for obtaining detailed maps of synaptic connectivity has paved the way for uncovering the connectomes of entire brains or brain regions. We describe a third and complementary new strategy for investigating and manipulating neural circuits: the artificial insertion of new synapses into existing neural circuits using genetic engineering tools. We have successfully accomplished this in C. elegans. Thus, In addition to being the first animal with an entirely mapped connectome, C. elegans is now also the first animal to have an editable connectome. Variations on this approach may be applicable in more complex nervous systems.
目前,我们对神经回路工作方式的大部分了解都归功于基于神经活动电记录或光记录的方法。这种情况正在发生巨大变化。首先,光遗传学技术的出现使精确操纵特定神经元的活动成为可能。其次,用于获取突触连接详细图谱的超分辨率方法的发展为揭示整个大脑或脑区的连接组铺平了道路。我们描述了一种用于研究和操纵神经回路的新的补充策略:使用基因工程工具将新突触人工插入现有神经回路。我们已经在秀丽隐杆线虫中成功实现了这一点。因此,除了是第一种拥有完全绘制好的连接组的动物外,秀丽隐杆线虫现在也是第一种拥有可编辑连接组的动物。这种方法的变体可能适用于更复杂的神经系统。