Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India.
Phys Rev Lett. 2015 Sep 18;115(12):127204. doi: 10.1103/PhysRevLett.115.127204. Epub 2015 Sep 16.
When the constituent spins have an energetic preference to lie along an easy axis, triangular and kagome lattice antiferromagnets often develop long-range order that distinguishes the three sublattices of the underlying triangular Bravais lattice. In zero magnetic field, this three-sublattice order melts either in a two-step manner, i.e., via an intermediate phase with power-law three-sublattice order controlled by a temperature-dependent exponent η(T)∈(1/9,1/4), or via a transition in the three-state Potts universality class. Here, I predict that the uniform susceptibility to a small easy-axis field B diverges as χ(B)∼|B|^{-[(4-18η)/(4-9η)]} in a large part of the intermediate power-law ordered phase [corresponding to η(T)∈(1/9,2/9)], providing an easy-to-measure thermodynamic signature of two-step melting. I also show that these two melting scenarios can be generically connected via an intervening multicritical point and obtain numerical estimates of multicritical exponents.
当组成自旋具有沿易轴排列的能量偏好时,三角和 kagome 格子反铁磁体通常会发展出长程有序,从而区分基础三角布拉维晶格的三个亚晶格。在零磁场中,这种三亚晶格有序通过两步方式熔融,即通过具有由温度相关指数 η(T)∈(1/9,1/4)控制的幂律三亚晶格有序的中间相熔融,或者通过三态 Potts 普遍类的转变熔融。在这里,我预测在大的中间幂律有序相中[对应于 η(T)∈(1/9,2/9)],对小易轴场 B 的均匀磁化率会发散为 χ(B)∼|B|^{-[(4-18η)/(4-9η)]},这为两步熔融提供了一个易于测量的热力学特征。我还表明,这两种熔融情况可以通过中间的多点临界现象连接起来,并获得多点临界指数的数值估计。