Beke Lijs, Kig Cenk, Linders Joannes T M, Boens Shannah, Boeckx An, van Heerde Erika, Parade Marc, De Bondt An, Van den Wyngaert Ilse, Bashir Tarig, Ogata Souichi, Meerpoel Lieven, Van Eynde Aleyde, Johnson Christopher N, Beullens Monique, Brehmer Dirk, Bollen Mathieu
Oncology Discovery, Janssen Research & Development, a division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium.
Laboratory of Biosignaling & Therapeutics, KULeuven Department of Cellular and Molecular Medicine, University of Leuven, Campus Gasthuisberg, O&N1/ Box 901, Herestraat 49, 3000 Leuven, Belgium.
Biosci Rep. 2015 Oct 2;35(6):e00267. doi: 10.1042/BSR20150194.
Maternal embryonic leucine zipper kinase (MELK), a serine/threonine protein kinase, has oncogenic properties and is overexpressed in many cancer cells. The oncogenic function of MELK is attributed to its capacity to disable critical cell-cycle checkpoints and reduce replication stress. Most functional studies have relied on the use of siRNA/shRNA-mediated gene silencing. In the present study, we have explored the biological function of MELK using MELK-T1, a novel and selective small-molecule inhibitor. Strikingly, MELK-T1 triggered a rapid and proteasome-dependent degradation of the MELK protein. Treatment of MCF-7 (Michigan Cancer Foundation-7) breast adenocarcinoma cells with MELK-T1 induced the accumulation of stalled replication forks and double-strand breaks that culminated in a replicative senescence phenotype. This phenotype correlated with a rapid and long-lasting ataxia telangiectasia-mutated (ATM) activation and phosphorylation of checkpoint kinase 2 (CHK2). Furthermore, MELK-T1 induced a strong phosphorylation of p53 (cellular tumour antigen p53), a prolonged up-regulation of p21 (cyclin-dependent kinase inhibitor 1) and a down-regulation of FOXM1 (Forkhead Box M1) target genes. Our data indicate that MELK is a key stimulator of proliferation by its ability to increase the threshold for DNA-damage tolerance (DDT). Thus, targeting MELK by the inhibition of both its catalytic activity and its protein stability might sensitize tumours to DNA-damaging agents or radiation therapy by lowering the DNA-damage threshold.
母源胚胎亮氨酸拉链激酶(MELK)是一种丝氨酸/苏氨酸蛋白激酶,具有致癌特性,在许多癌细胞中过表达。MELK的致癌功能归因于其能够使关键的细胞周期检查点失活并减轻复制应激。大多数功能研究依赖于使用siRNA/shRNA介导的基因沉默。在本研究中,我们使用新型选择性小分子抑制剂MELK-T1探索了MELK的生物学功能。令人惊讶的是,MELK-T1引发了MELK蛋白的快速且蛋白酶体依赖性降解。用MELK-T1处理MCF-7(密歇根癌症基金会-7)乳腺腺癌细胞会诱导停滞的复制叉和双链断裂的积累,最终导致复制性衰老表型。这种表型与共济失调毛细血管扩张症突变(ATM)的快速且持久激活以及检查点激酶2(CHK2)的磷酸化相关。此外,MELK-T1诱导p53(细胞肿瘤抗原p53)的强烈磷酸化、p21(细胞周期蛋白依赖性激酶抑制剂1)的长期上调以及FOXM1(叉头框M1)靶基因的下调。我们的数据表明,MELK通过其提高DNA损伤耐受性(DDT)阈值的能力成为增殖的关键刺激因子。因此,通过抑制其催化活性和蛋白质稳定性来靶向MELK可能会通过降低DNA损伤阈值使肿瘤对DNA损伤剂或放射治疗敏感。