Suppr超能文献

一种用于纤维素生物质节能型高固进料分批酶液化的方法。

A process for energy-efficient high-solids fed-batch enzymatic liquefaction of cellulosic biomass.

机构信息

Department of Chemical Engineering and Materials Science, University of California, Davis, One Shields Ave, Davis, CA 95616, USA.

Aspect Imaging, One Shields Ave, Davis, CA 95616, USA.

出版信息

Bioresour Technol. 2015 Dec;198:488-96. doi: 10.1016/j.biortech.2015.09.042. Epub 2015 Sep 21.

Abstract

The enzymatic hydrolysis of cellulosic biomass is a key step in the biochemical production of fuels and chemicals. Economically feasible large-scale implementation of the process requires operation at high solids loadings, i.e., biomass concentrations >15% (w/w). At increasing solids loadings, however, biomass forms a high viscosity slurry that becomes increasingly challenging to mix and severely mass transfer limited, which limits further addition of solids. To overcome these limitations, we developed a fed-batch process controlled by the yield stress and its changes during liquefaction of the reaction mixture. The process control relies on an in-line, non-invasive magnetic resonance imaging (MRI) rheometer to monitor real-time evolution of yield stress during liquefaction. Additionally, we demonstrate that timing of enzyme addition relative to biomass addition influences process efficiency, and the upper limit of solids loading is ultimately limited by end-product inhibition as soluble glucose and cellobiose accumulate in the liquid phase.

摘要

纤维素生物质的酶解是生物燃料和化学品生产的关键步骤。经济可行的大规模实施该工艺需要在高固体负荷下运行,即生物质浓度>15%(w/w)。然而,随着固体负荷的增加,生物质形成高粘度的浆料,混合变得越来越困难,并且严重受到传质限制,这限制了进一步添加固体。为了克服这些限制,我们开发了一种由屈服应力及其在反应混合物液化过程中的变化控制的分批进料工艺。该过程控制依赖于在线、非侵入式磁共振成像(MRI)流变仪来监测液化过程中屈服应力的实时演变。此外,我们还证明了酶添加相对于生物质添加的时间会影响工艺效率,并且固体负载的上限最终受到终产物抑制的限制,因为可溶性葡萄糖和纤维二糖在液相中积累。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验